2
|
Quinson J, Aalling-Frederiksen O, Dacayan WL, Bjerregaard JD, Jensen KD, Jørgensen MRV, Kantor I, Sørensen DR, Theil Kuhn L, Johnson MS, Escudero-Escribano M, Simonsen SB, Jensen KMØ. Surfactant-Free Colloidal Syntheses of Gold-Based Nanomaterials in Alkaline Water and Mono-alcohol Mixtures. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2173-2190. [PMID: 36936178 PMCID: PMC10018736 DOI: 10.1021/acs.chemmater.3c00090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Gold nanoparticles (Au NPs) and gold-based nanomaterials combine unique properties relevant for medicine, imaging, optics, sensing, catalysis, and energy conversion. While the Turkevich-Frens and Brust-Schiffrin methods remain the state-of-the-art colloidal syntheses of Au NPs, there is a need for more sustainable and tractable synthetic strategies leading to new model systems. In particular, stabilizers are almost systematically used in colloidal syntheses, but they can be detrimental for fundamental and applied studies. Here, a surfactant-free synthesis of size-controlled colloidal Au NPs stable for months is achieved by the simple reduction of HAuCl4 at room temperature in alkaline solutions of low-viscosity mono-alcohols such as ethanol or methanol and water, without the need for any other additives. Palladium (Pd) and bimetallic Au x Pd y NPs, nanocomposites and multimetallic samples, are also obtained and are readily active (electro)catalysts. The multiple benefits over the state-of-the-art syntheses that this simple synthesis bears for fundamental and applied research are highlighted.
Collapse
Affiliation(s)
- Jonathan Quinson
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Biochemical
and Chemical Engineering Department, Aarhus
University, Åbogade 40, DK-8200 Aarhus, Denmark
| | | | - Waynah L. Dacayan
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Joachim D. Bjerregaard
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Kim D. Jensen
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Mads R. V. Jørgensen
- Department
of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
| | - Innokenty Kantor
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
- Department
of Physics, The Technical University of
Denmark, Fysikvej Building
311, DK-2800 Kgs.
Lyngby, Denmark
| | - Daniel R. Sørensen
- Department
of Chemistry and iNANO, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- MAX
IV Laboratory, Lund University, Fotongatan 2, SE-224 84 Lund, Sweden
| | - Luise Theil Kuhn
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Matthew S. Johnson
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - María Escudero-Escribano
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, UAB Campus, Bellaterra, 08193 Barcelona, Spain
- ICREA, Passeig de Lluís Companys,
23, 08010 Barcelona, Spain
| | - Søren B. Simonsen
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Fysikvej Building 310, DK-2800 Kgs. Lyngby, Denmark
| | - Kirsten M. Ø. Jensen
- Department
of Chemistry, Copenhagen University, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
3
|
Mints VA, Pedersen JK, Bagger A, Quinson J, Anker AS, Jensen KMØ, Rossmeisl J, Arenz M. Exploring the Composition Space of High-Entropy Alloy Nanoparticles for the Electrocatalytic H 2/CO Oxidation with Bayesian Optimization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladislav A. Mints
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Jack K. Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Alexander Bagger
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Andy S. Anker
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Kirsten M. Ø. Jensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø 2100, Denmark
| | - Matthias Arenz
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
4
|
Juelsholt M, Quinson J, Kjær ETS, Wang B, Pittkowski R, Cooper SR, Kinnibrugh TL, Simonsen SB, Theil Kuhn L, Escudero-Escribano M, Jensen KMØ. Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:230-235. [PMID: 35281627 PMCID: PMC8895034 DOI: 10.3762/bjnano.13.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A surfactant-free synthesis of precious metal nanoparticles (NPs) performed in alkaline low-boiling-point solvents has been recently reported. Monoalcohols are here investigated as solvents and reducing agents to obtain colloidal Os nanoparticles by using low-temperature (<100 °C) surfactant-free syntheses. The effect of the precursor (OsCl3 or H2OsCl6), precursor concentration (up to 100 mM), solvent (methanol or ethanol), presence or absence of a base (NaOH), and addition of water (0 to 100 vol %) on the resulting nanomaterials is discussed. It is found that no base is required to obtain Os nanoparticles as opposed to the case of Pt or Ir NPs. The robustness of the synthesis for a precursor concentration up to 100 mM allows for the performance of X-ray total scattering with pair distribution function (PDF) analysis, which shows that 1-2 nm hexagonal close packed (hcp) NPs are formed from chain-like [OsO x Cl y ] complexes.
Collapse
Affiliation(s)
- Mikkel Juelsholt
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Jonathan Quinson
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Emil T S Kjær
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Baiyu Wang
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Rebecca Pittkowski
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Susan R Cooper
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Tiffany L Kinnibrugh
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Søren B Simonsen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej Bldg. 310, Lyngby, DK-2800 Kgs., Denmark
| | - María Escudero-Escribano
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| | - Kirsten M Ø Jensen
- Department of Chemistry, University of Copenhagen, 5 Universitetsparken, Copenhagen, 2100, Denmark
| |
Collapse
|
5
|
Toward Overcoming the Challenges in the Comparison of Different Pd Nanocatalysts: Case Study of the Ethanol Oxidation Reaction. INORGANICS 2020. [DOI: 10.3390/inorganics8110059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Precious metal nanoparticles, in particular palladium nanomaterials, show excellent catalytic properties and are key in the development of energy systems. For instance, ethanol fuel cells are promising devices for sustainable energy conversion, where Pd-based catalysts are key catalysts for the related ethanol oxidation reaction (EOR). Pd is a limited resource; thus, a remaining challenge is the development of efficient and stable Pd-based catalysts. This calls for a deeper understanding of the Pd properties at the nanoscale. This knowledge can be gained in comparative studies of different Pd nanomaterials. However, such studies remain challenging to perform and interpret due to the lack of cross-studies using the same Pd nanomaterials as a reference. Here, as-prepared sub 3 nm diameter surfactant-free Pd nanoparticles supported on carbon are obtained by a simple approach. The as-prepared catalysts with Pd loading 10 and 30 wt % show higher activity and stability compared to commercially available counterparts for the EOR. Upon electrochemical testing, a significant size increase and loss of electrochemical active surface are observed for the as-prepared catalysts, whereas the commercial samples show an increase in the electrochemically active surface area and moderate size increase. This study shines light on the challenging comparison of different catalysts across the literature. Further advancement in Pd (electro)catalyst design will gain from including self-prepared catalysts. The simple synthesis detailed easily leads to suitable nanoparticles to be used as a reference for more systematic comparative studies of Pd catalysts across the literature.
Collapse
|