1
|
Sun Z, Amrillah T. Potential application of bismuth oxyiodide (BiOI) when it meets light. NANOSCALE 2024; 16:5079-5106. [PMID: 38379522 DOI: 10.1039/d3nr06559f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Bismuth oxyiodide (BiOI) is a kind of typical two-dimensional (2D) material that has been increasingly developed alongside other 2D materials such as graphene, MXenes, and transition-metal dichalcogenide. However, its potential applications have not been widely whispered compared to those of other 2D materials. Using its distinctive properties, BiOI can be used for various applications, especially when it meets sunlight and other light-related electromagnetic waves. In this present review, we discuss the developments of BiOI and challenges in the applications for photodetector and light-assisted sensors, photovoltaic devices, optoelectronic logic devices, as well as photocatalysts. We start the discussion with a basic understanding and development of BiOI, crystal structure, and its properties. The synthesis and further development, such as green synthesis and its challenges in the synthesis-suited industry, as well as device integration, are also explained together with a plausible strategy to enhance the feasibility of BiOI for those various applications. We believe that the provided discussion and perspectives will not only promote BiOI to be one of the highly considered 2D materials but can also assist recent graduates in any materials science discipline and inform the senior scientists and industrial-based stakeholders of the latest advances in bismuth oxide and mixed-anion compounds.
Collapse
Affiliation(s)
- Zaichun Sun
- School of Materials Science and Engineering & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Tahta Amrillah
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
2
|
Cerqueira Caldas GK, de Abreu Souza G, Silva de Menezes A, Ferreira Pereira SR, de Cássia Silva Luz R, Damos FS. Membraneless, self-powered immunosensing of a cardiac biomarker by exploiting a PEC platform based on CaBi 2Ta 2O 9 combined with bismuth oxyiodides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6541-6550. [PMID: 37990986 DOI: 10.1039/d3ay01309j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This work describes the development of a membraneless, self-powered immunosensor exploiting a photoelectrochemical system based on two photoelectrodes for cardiac troponin I (cTn). An electrode based on CaBi2Ta2O9 combined with bismuth oxyiodides (BiOI/Bi4O5I2/Bi5O7I) was modified with the cTnI antibody (anti-cTnI) and applied in a photoelectrochemical cell as a photoanode. To perform the cTnI detection exploiting a self-powered photoelectrochemical setup, the immunosensor (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was coupled to a photoelectrochemical cell containing a photocathode based on CuBi2O4 (CBO/FTO) for zero-biased photoelectrochemical immunosensing of cardiac troponin I (cTnI) biomarker. For comparison purposes, the photoanode was applied for cTnI detection in a three-electrode electrochemical cell. The spectroscopic, structural, and morphological characteristics of the photoelectrochemical (PEC) materials were evaluated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) measurements were performed in the presence and absence of light to investigate the effects of photons on the charge transfer resistance of the photoanode. The influence of the cTnI biomarker on the photoelectrochemical response of the anti-cTnI antibody-modified photoelectrochemical platform (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was evaluated by measuring the photocurrent of the system. The immunosensor presented a linear response ranging from 1 pg mL-1 to 200 ng mL-1 as well as a mean recovery percentage between 95.7% and 108.0% in real human serum samples for the cTnI biomarker.
Collapse
Affiliation(s)
| | | | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão-UFMA, 65080-805, São Luís, MA, Brazil
| | | | | | - Flavio Santos Damos
- Department of Chemistry, Federal University of Maranhão-UFMA, 65080-805, São Luís, MA, Brazil.
| |
Collapse
|
3
|
Kasuma Warda Ningsih S, Wibowo R, Gunlazuardi J. Photoelectrochemical performance of BiOI/TiO 2 nanotube arrays (TNAs) p-n heterojunction synthesized by SILAR-ultrasonication-assisted methods. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221563. [PMID: 37388319 PMCID: PMC10300691 DOI: 10.1098/rsos.221563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 07/01/2023]
Abstract
In order to extend the visible region activity of titania nanotube array (TNAs) films, the successive ionic layer adsorption and reaction (SILAR)-ultrasonication-assisted method has been used to prepare BiOI-modified TiO2 nanotube arrays (BiOI/TNAs). The band gap of BiOI/TNAs for all the variations reveals absorption in the visible absorption. The surface morphology of BiOI/TNAs is shown in the nanoplate, nanoflake and nanosheet forms with a vertical orientation perpendicular to TiO2. The crystalline structure of BiOI did not change the structure of the anatase TNAs, with the band gap energy of the BiOI/TNAs semiconductor in the visible region. The photocurrent density of the BiOI/TNAs extends to the visible-light range. BiOI/TNAs prepared with 1 mM Bi and 1 mM KI on TNAs 40 V 1 h, 50 V 30 min show the optimum photocurrent density. A tandem dye-sensitized solar cell (DSSC)-photoelectrochemical (PEC) was used for hydrogen production in salty water. BiOI/TNAs optimum was used as the photoanode of the PEC cell. The solar to hydrogen conversion efficiency (STH) of tandem DSSC-PEC reaches 1.34% in salty water.
Collapse
Affiliation(s)
- Sherly Kasuma Warda Ningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Negeri Padang, Kampus Air tawar, Padang 25130, Indonesia
| | - Rahmat Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| | - Jarnuzi Gunlazuardi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences (FMIPA), Universitas Indonesia, Depok 16424, Indonesia
| |
Collapse
|
4
|
Wei Y, Guo J, Wang L, Qu C, Geng Y, He S, Su M, Liu H. Bimetallic core-shell nanoparticle arrays at liquid-liquid interface for the degradation and monitoring of dye pollutants in situ by surface-enhanced Raman spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1254-1260. [PMID: 36843536 DOI: 10.1039/d3ay00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In situ monitoring of chemical reactions has attracted great attention in many fields. Herein, we successfully in situ track the degradation reaction process of a dye pollutant, methylene blue (MB), on the liquid-liquid interface (LLI) of bimetallic gold core-silver shell nanoparticles (Au@AgNPs) by surface-enhanced Raman spectroscopy (SERS). The optimized LLI bimetallic array of Au50@Ag10NPs exhibits ultrahigh SERS enhancement and excellent catalytic activity. Results evidenced a detection limit of MB down to 1 ppb, and the degradation rate of Au@AgNPs was as high as 85.2% in 30 s, relying on the excellent self-healing properties of nanoarrays. Furthermore, as a practical SERS analyzer, the LLI bimetallic array was used to detect trace amounts of other harmful dyes, including Rhodamine 6G (R6G) and crystal violet (CV) in pure or complex media. Our LLI bimetallic array exhibits a new orientation for monitoring catalytic reactions involving highly toxic, hazardous, or costly targets in food security fields in the future.
Collapse
Affiliation(s)
- Yujiao Wei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Jinhu Guo
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Liming Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Yuchuang Geng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China.
| | - Shengnan He
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China.
| |
Collapse
|
5
|
Kamakshi P, Joshitha C, Chella S, Selvaraj S. Synthesis, characterization of BiOI/rGO nanocomposite and its photocatalytic functionality analysis under visible light. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
6
|
Choi YC, Nie R. Heavy pnictogen chalcohalides for efficient, stable, and environmentally friendly solar cell applications. NANOTECHNOLOGY 2023; 34:142001. [PMID: 36603211 DOI: 10.1088/1361-6528/acb05d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Solar cell technology is an effective solution for addressing climate change and the energy crisis. Therefore, many researchers have investigated various solar cell absorbers that convert Sunlight into electric energy. Among the different materials researched, heavy pnictogen chalcohalides comprising heavy pnictogen cations, such as Bi3+and Sb3+, and chalcogen-halogen anions have recently been revisited as emerging solar absorbers because of their potential for efficient, stable, and low-toxicity solar cell applications. This review explores the recent progress in the applications of heavy pnictogen chalcohalides, including oxyhalides and mixed chalcohalides, in solar cells. We categorize them into material types based on their common structural characteristics and describe their up-to-date developments in solar cell applications. Finally, we discuss their material imitations, challenges for further development, and possible strategies for overcoming them.
Collapse
Affiliation(s)
- Yong Chan Choi
- Division of Energy Technology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Riming Nie
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| |
Collapse
|
7
|
Halogen-containing semiconductors: From artificial photosynthesis to unconventional computing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|