1
|
Wang J, Liao A, Guo RJ, Ma X, Wu J. Thiazole and Isothiazole Chemistry in Crop Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:30-46. [PMID: 39727107 DOI: 10.1021/acs.jafc.4c08185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Thiazole and isothiazole are types of five-membered heterocycles that contain both sulfur and nitrogen atoms. They have gained attention in the field of green pesticide research due to their low toxicity, strong biological activity, and ability to undergo diverse structural modifications. By incorporating thiazole and isothiazole groups into various compounds, researchers have been able to create a wide range of pesticides with broad-spectrum effectiveness. Understanding the relationship between the structure of these compounds and their activities is crucial for the development of new and highly potent pesticides. This review highlights thiazole and isothiazole derivatives with various biological activities and aims to inspire the development of innovative pesticide based on these structures.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Anjing Liao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ren Jiang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xining Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
2
|
Zhou LM, Yang JF, Li HH, Chen W, Li YW, Zhu XL, Yang GF. Discovery of Novel Oxathiapiprolin Derivatives as Potent Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17649-17657. [PMID: 39047266 DOI: 10.1021/acs.jafc.4c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.
Collapse
Affiliation(s)
- Li-Ming Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hong-Hao Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yi-Wen Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
3
|
Agrawal S, Dufossé L, Deshmukh SK. Antibacterial metabolites from an unexplored strain of marine fungi Emericellopsis minima and determination of the probable mode of action against Staphylococcus aureus and methicillin-resistant S. aureus. Biotechnol Appl Biochem 2023; 70:120-129. [PMID: 35239227 DOI: 10.1002/bab.2334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 11/11/2022]
Abstract
Increasing prevalence of drug resistance has led researchers to focus on discovering new antibacterial agents derived from the marine biome. Although ample studies have investigated marine fungi for their bioactive metabolites with hopeful prospects in drug discovery. The present study was aimed to isolate/ identify potential antimethicillin-resistant Staphylococcus aureus compounds producing marine fungal strain from the Indian marine environment. The effective anti-MRSA compound was produced by a marine fungal strain designated as D6. The D6 strain exhibited 99% similarity to Emericellopsis minima based on 18S rRNA gene analysis. The culture conditions of E. minima D6 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The agar well diffusion assay was used to determine the inhibition zone diameter of the crude extract against S. aureus and methicillin-resistant S. aureus, whereas the broth microdilution method was used to determine their minimum inhibitory concentration (MIC) active fraction. MIC values of the ethyl acetate fraction ranged from 0.8 to 1 mg/mL. SEM analysis revealed that the ethyl acetate fraction induces deep craters in methicillin-resistant S. aureus. Further, GC-MS analysis confirmed the occurrence of a total of 15 major compounds in active ethyl acetate fraction. Some of the major antibacterial compounds included cyclopentanol, isothiazole, benzoic acid, pyrrolo[1,2-a] pyrazine-1,4-dione, and hexahydro. These findings suggest that the marine fungi of E. minima can be a valuable candidate for prospecting antibiotics and an alternative complementary strategy for drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Shivankar Agrawal
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, Saint-Denis, France
| | - Sunil Kumar Deshmukh
- TERI-Deakin Nano Biotechnology Centre, Biotechnology and Management of Bioresources Division, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
4
|
Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-acyl- N-arylalaninates. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010419. [PMID: 36615609 PMCID: PMC9822468 DOI: 10.3390/molecules28010419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The addition of active groups of known fungicides, or systemic acquired resistance inducers, into novel compound molecules to search for potential antifungal compounds is a popular and effective strategy. In this work, a new series of N-acyl-N-arylalanines was developed and synthesized, in which 1,2,3-thiadiazol-5-ylcarbonyl or 3,4-dichloroisothiazol-5-ylcarbonyl (fragments from synthetic plant resistance activators tiadinil and isotianil, respectively) and a fragment of N-arylalanine, the toxophoric group of acylalanine fungicides. Several new synthesized compounds have shown moderate antifungal activity against fungi in vitro, such as B. cinerea, R. solani and S. sclerotiorum. In vivo tests against A. brassicicola showed that compound 1d was 92% effective at a concentration of 200 µg/mL, similar to level of tiadinil, a known inducer of systemic resistance. Thus, 1d could be considered a new candidate fungicide for further detailed study. The present results will advance research and influence the search for more promising fungicides for disease control in agriculture.
Collapse
|
5
|
Yan Y, Li M, Shi Q, Huang M, Li W, Cao L, Zhang X. Atropoenantioselective Arylation of 5‐Amino‐Isothiazoles with Methyl
p
‐Quinone Carboxylate. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yingkun Yan
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Min Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Quan Shi
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
| | - Min Huang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenzhe Li
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lianyi Cao
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiaomei Zhang
- Department of Chemistry Xihua University Chengdu 610039 P. R. China
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu 610041 P. R. China
| |
Collapse
|
6
|
Wang Z, Ke Q, Tao K, Li Q, Xia Y, Bao J, Chen Q. Activity and Point Mutation G699V in PcoORP1 Confer Resistance to Oxathiapiprolin in Phytophthora colocasiae Field Isolates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14140-14147. [PMID: 36315898 DOI: 10.1021/acs.jafc.2c06707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The oxysterol-binding protein inhibitor oxathiapiprolin is a new fungicide for controlling oomycetes diseases. Besides, laboratory mutagenesis oxathiapiprolin-resistance among phytopathogenic oomycetes in the field remains unknown. Here, the sensitivity of 97 P. colocasiae isolates to oxathiapiprolin was examined that were collected between 2011 and 2016. We obtained a baseline sensitivity with a mean EC50 value of 5.2639 × 10-4 μg mL-1. We showed that 6/32 isolates collected in Fujian Province from 2019 to 2020 were resistant to oxathiapiprolin without a significant fitness penalty on sporulation, vegetative growth, and virulence of the field isolates. The oxathiapiprolin resistance field isolates contained the point mutation glycine to valine at 699 in PcoORP1. The point mutation G699V was verified to confer resistance of P. colocasiae to oxathiapiprolin using the CRISPR/Cas9 system. The mutation G699V decreased the binding affinity between oxathiapiprolin and PcoORP1. These results will improve our understanding of the mechanism of P. colocasiae resistance to oxathiapiprolin under field conditions.
Collapse
Affiliation(s)
- Zhixin Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Qihan Ke
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Kezhu Tao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Qianqian Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| | - Yeqiang Xia
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Bao
- The Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghe Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Li T, Jin J, Song J, Lv J, Jin Z. Advances in the green synthesis and agrichemical applications of oxathiapiprolin derivatives. Front Chem 2022; 10:987557. [PMID: 36105307 PMCID: PMC9465042 DOI: 10.3389/fchem.2022.987557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Oxathiapiprolin was developed with high antifungal activity and novel target protein and is used in the oomycetes control for crop protection. The structural modifications of oxathiapiprolin are summarized. The achievements and challenges in the structural modification of oxathiapiprolin are also discussed in this mini review. The outlook in this field is perspected according to our own opinion and understanding on the development of oxysterol binding protein inhibition fungicides.
Collapse
|
8
|
Yang D, Qi X, Kalinina TA, Glukhareva TV, Tang L, Li Z, Fan Z. Synthesis of novel N-(2-phenyl-3-pyridyl) thiadiazole/isothiazole carboxamide analogs as potent plant elicitors. PEST MANAGEMENT SCIENCE 2022; 78:1138-1145. [PMID: 34799969 DOI: 10.1002/ps.6728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Plant elicitors are a class of plant protection agents that can stimulate plant immunity against phytopathogen without a potential resistance problem. In searching for novel plant elicitor candidates, a series of novel N-(2-phenyl-3-pyridyl) thiadiazole/isothiazole carboxamide analogs were designed and synthesized. RESULTS In vitro bioassay showed that all new compounds exhibited weak direct fungicidal activity. However, compounds 3b, 3g, 3n and 3o showed broad spectrum of in vivo activity against four plant fungi tested. In particularly, 3g showed 80% activity against Rhizoctonia solani in a glasshouse at a concentration of 1 μg mL-1 . For induction activity of tobacco against tobacco mosaic virus (TMV), compounds 3c and 3v showed 67% and 68% inhibitory activity, respectively, which were superior to the positive controls ribavirin and ningnanmycin. Compound 3g showed moderate induction activity (41%). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis found that, 3g could up-regulate expression of genes that are related to reactive oxygen species (ROS), pathogenesis-related protein (PRP) and salicylic acid (SA) signalling. CONCLUSION These results indicated that 3g as an elicitor candidate might act on the SA signalling pathway. According to our findings, N-(2-phenyl-3-pyridyl) thiadiazole/isothiazole carboxamide analogs might be promising lead scaffolds as a novel plant elicitor for further investigation.
Collapse
Affiliation(s)
- Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xin Qi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Tatiana A Kalinina
- Department of Technology for Organic Synthesis, Institute of Chemical Technology, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Department of Technology for Organic Synthesis, Institute of Chemical Technology, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg, Russia
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
9
|
Bera A, Patra P, Azad A, Ali SA, Manna SK, Saha A, Samanta S. Neat synthesis of isothiazole compounds, and studies on their synthetic applications and photophysical properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj01962k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonium thiocyanate-promoted simple, rapid and eco-friendly neat synthesis of isothiazoles is developed for the first time.
Collapse
Affiliation(s)
- Anirban Bera
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Prasanta Patra
- Jhargram Raj College, Jhargram, West Bengal, 721507, India
| | - Abulkalam Azad
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | - Sk Asraf Ali
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | | | - Amit Saha
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | | |
Collapse
|
10
|
Synthesis of Novel Thiazolyl Hydrazine Derivatives and Their Antifungal Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/6563871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of novel thiazolyl hydrazine derivatives 3a–3o were synthesized and evaluated for their in vitro antifungal activity against six phytopathogenic strains, namely, Botryosphaeria dothidea (B. d.), Gibberella sanbinetti (G. s.), Fusarium oxysporum (F. o.), Thanatephorus cucumeris (T. c.), Sclerotinia sclerotiorum (S. s.), and Verticillium dahliae (V. d.), by the classical mycelial growth rate method. Biological assessment results showed that most of these target compounds showed good antifungal activity toward tested strains. Especially, compound 3l showed excellent antifungal activities against B. d. and G. s. with relatively lower EC50 values of 0.59 and 0.69 µg/mL, respectively, which were extremely superior to those of commercial fungicides fluopyram, boscalid, and hymexazol and were comparable to those of carbendazim. Given the excellent bioactivity of designed compounds, this kind of thiazolyl hydrazine framework can provide a suitable point for exploring highly efficient antifungal agents.
Collapse
|
11
|
Long ZQ, Yang LL, Zhang JR, Liu ST, Wang PY, Zhu JJ, Shao WB, Liu LW, Yang S. Fabrication of Versatile Pyrazole Hydrazide Derivatives Bearing a 1,3,4-Oxadiazole Core as Multipurpose Agricultural Chemicals against Plant Fungal, Oomycete, and Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8380-8393. [PMID: 34296859 DOI: 10.1021/acs.jafc.1c02460] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing multipurpose agricultural chemicals is appealing in crop protection, thus eventually realizing the reduction and efficient usage of pesticides. Herein, an array of versatile pyrazole hydrazide derivatives bearing a 1,3,4-oxadiazole core were initially synthesized and biologically evaluated the antifungal, antioomycetes, and antibacterial activities. In addition, the pyrazole ring was replaced by the correlative pyrrole, thiazole, and indole scaffolds to extend the molecular diversity. The results showed that most of these hybrid compounds were empowered with multifunctional bioactivities, which are exemplified by compounds a1-a6, b1-b3, b7, b10, b13, and b18. For the antifungal activity, the minimal EC50 values could afford 0.47 (a2), 1.05 (a2), 0.65 (a1), and 1.32 μg/mL (b3) against the corresponding fungi Gibberella zeae (G. z.), Fusarium oxysporum, Botryosphaeria dothidea, and Rhizoctonia solani. In vivo pot experiments against corn scab (caused by G. z.) revealed that the compound a2 was effective with protective and curative activities of 90.2 and 86.3% at 200 μg/mL, which was comparable to those of fungicides boscalid and fluopyram. Further molecular docking study and enzymatic activity analysis (IC50 = 3.21 μM, a2) indicated that target compounds were promising succinate dehydrogenase inhibitors. Additionally, compounds b2 and a4 yielded superior anti-oomycete and antibacterial activities toward Phytophora infestins and Xanthomonas oryzae pv. oryzae with EC50 values of 2.92 and 8.43 μg/mL, respectively. In vivo trials against rice bacterial blight provided the control efficiency within 51.2-55.3% (a4) at 200 μg/mL, which were better than that of bismerthiazol. Given their multipurpose characteristics, these structures should be positively explored as agricultural chemicals.
Collapse
Affiliation(s)
- Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Lin-Li Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shi-Tao Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Song S, Qiao C, Han L, Xie H, Bi Y, Qin F, Wu Q, Li Y, Fan Z. Hydrolysis Kinetics of a Novel 3,4-Dichloroisothiazole Plant-Activator Candidate LY5-24-2 by UPLC-Q-TOF. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:1009-1016. [PMID: 33772599 DOI: 10.1007/s00128-021-03204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Hydrolysis characteristics of a novel 3,4-dichloroisothiazole based fungicide with activating plant defense responses as a candidate plant-activator LY5-24-2 were investigated under different conditions (pH and temperature) using ultra-performance liquid chromatography (UPLC) and quadrupole Time-of-Flight (Q-TOF). The hydrolysis case complied with the first-order kinetic model, with half-lives ranging from 4.8 h to 3.2 days at pH 4, 7, 9 and temperature at 25 and 50℃. One of the hydrolysis metabolite 3,4-dichloroisothiazole-5-carboxylic acid (metabolite 1, M1) was determined and quantified using authentic standard. The other hydrolysate 3-chloro-5-(trifluoromethyl) pyridin-2-amine (metabolite 2, M2) was determined and identified according to accurate mass information, fragmentation patterns and principle component analysis (PCA). By utilizing high-resolution mass spectrometry and multivariate statistical analysis, hydrolysis dynamic of the metabolites was characterized and figured out. This research provided a non-target screening method to analyze hydrolysis metabolites of a new plant-activator and to find its degradation products in aqueous solution.
Collapse
Affiliation(s)
- Shuangyu Song
- College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute of Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute of Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Yingying Bi
- College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Fayi Qin
- College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yuedong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
13
|
Gao Y, Zhao X, Sun X, Wang Z, Zhang J, Li L, Shi H, Wang M. Enantioselective Detection, Bioactivity, and Degradation of the Novel Chiral Fungicide Oxathiapiprolin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3289-3297. [PMID: 33710880 DOI: 10.1021/acs.jafc.0c04163] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oxathiapiprolin is a novel chiral piperidine thiazole isooxazoline fungicide that contains a pair of enantiomers. An effective analytical method was established for the enantioselective detection of oxathiapiprolin in fruit, vegetable, and soil samples using ultraperformance liquid chromatography-tandem triple quadrupole mass spectrometry. The optimal enantioseparation was achieved on a Chiralpak IG column at 35 °C using acetonitrile and 0.1% formic acid aqueous solution (90:10, v/v) as the mobile phase. The absolute configuration of the oxathiapiprolin enantiomers was identified with the elution order of R-(-)-oxathiapiprolin and S-(+)-oxathiapiprolin by electron circular dichroism spectra. The bioactivity of R-(-)-oxathiapiprolin was 2.49 to 13.30-fold higher than that of S-(+)-oxathiapiprolin against six kinds of oomycetes. The molecular docking result illuminated the mechanism of enantioselectivity in bioactivity. The glide score (-8.00 kcal/mol) for the R-enantiomer was better with the binding site in Phytophthora capsici than the S-enantiomer (-7.50 kcal/mol). Enantioselective degradation in tomato and pepper under the field condition was investigated and indicated that R-(-)-oxathiapiprolin was preferentially degraded. The present study determines the enantioselectivity of oxathiapiprolin about enantioselective detection, bioactivity, and degradation for the first time. The R-enantiomer will be a better choice than racemic oxathiapiprolin to enhance the bioactivity and reduce the pesticide residues at a lower application rate.
Collapse
Affiliation(s)
- Yingying Gao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuejun Zhao
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Zhang ZZ, Chen R, Zhang XH, Zhang XG. Synthesis of Isoselenazoles and Isothiazoles from Demethoxylative Cycloaddition of Alkynyl Oxime Ethers. J Org Chem 2021; 86:632-642. [PMID: 33252231 DOI: 10.1021/acs.joc.0c02286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method for the synthesis of isoselenazoles and isothiazoles has been developed by the base-promoted demethoxylative cycloaddition of alkynyl oxime ethers using the cheap and inactive Se powder and Na2S as selenium and sulfur sources. This transformation features the direct construction of N-, Se-, and S-containing heterocycles through the formation of N-Se/S and C-Se/S bonds in one-pot reactions with excellent functional group tolerance.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rong Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
15
|
Djukić MB, Jeremić MS, Filipović IP, Klisurić OR, Jelić RM, Popović S, Matić S, Onnis V, Matović ZD. Ruthenium(II) Complexes of Isothiazole Ligands: Crystal Structure, HSA/DNA Interactions, Cytotoxic Activity and Molecular Docking Simulations. ChemistrySelect 2020. [DOI: 10.1002/slct.202002670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maja B. Djukić
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Marija S. Jeremić
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Ignjat P. Filipović
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovića 12 34000 Kragujevac Serbia
| | - Olivera R. Klisurić
- Department of Physics Faculty of Sciences University of Novi Sad Trg Dositeja Obradovića 4 21000 Novi Sad Serbia
| | - Ratomir M. Jelić
- Department of Pharmacy Faculty of Medical Sciences University of Kragujevac Svetozara Markovića 69 34000 Kragujevac Serbia
| | - Suzana Popović
- Centre for Molecular Medicine and Stem Cell Research Faculty of Medical Sciences University of Kragujevac Svetozara Markovića 69 34000 Kragujevac Serbia
| | - Sanja Matić
- Department of Pharmacy Faculty of Medical Sciences University of Kragujevac Svetozara Markovića 69 34000 Kragujevac Serbia
| | - Valentina Onnis
- Department of Life and Environmental Sciences Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences University of Cagliari University Campus, S.P. n° 8, Km 0.700 I-09042 Monserrato (CA) Italy
| | - Zoran D. Matović
- Department of Chemistry Faculty of Science University of Kragujevac Radoja Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
16
|
Li JL, Zhou LM, Gao MQ, Huang ZQ, Liu XL, Zhu XL, Yang GF. Design, synthesis, and fungicidal evaluation of novel oxysterol binding protein inhibitors for combatting resistance associated with oxathiapiprolin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104673. [PMID: 32828378 DOI: 10.1016/j.pestbp.2020.104673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Oxathiapiprolin, the first successful oxysterol binding protein (OSBP) inhibitor for oomycete control, is regarded as an important milestone in the history of fungicide discovery. However, its interaction with OSBP remain unclear. Moreover, some plant pathogenic oomycetes have developed medium to high resistance to oxathiapiprolin. In this paper, the three-dimensional (3D) structure of OSBP from Phytophthora capsici (pcOSBP) was built, and its interaction with oxathiapiprolin was systematically investigated by integrating molecular docking, molecular dynamics simulations, and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations. The computational results showed that oxathiapiprolin bound to pcOSBP forms H-bonds with Leu73, Lys74, Ser69, and water molecules. Then, based on its interaction with pcOSBP, oxathiapiprolin was structurally modified to discover new analogs with high fungicidal activity and a low risk of resistance. Fortunately, compound 1e was successfully designed and synthesized as the most potent candidate, and it showed a much lower resistance risk (RF < 1) against LP3-M and LP3-H in P. capsici. The present work indicated that the piperidinyl-thiazole-isoxazoline moiety is useful for further optimization. Furthermore, compound 1e could be used as a lead compound for the discovery of new OSBP inhibitors.
Collapse
Affiliation(s)
- Jian-Long Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li-Ming Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Meng-Qi Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhong-Qiao Huang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xi-Li Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China.
| |
Collapse
|
17
|
Yu B, Zhou S, Cao L, Hao Z, Yang D, Guo X, Zhang N, Bakulev VA, Fan Z. Design, Synthesis, and Evaluation of the Antifungal Activity of Novel Pyrazole-Thiazole Carboxamides as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7093-7102. [PMID: 32530619 DOI: 10.1021/acs.jafc.0c00062] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Succinate dehydrogenase (SDH) is regarded as a promising target for fungicide discovery. To continue our ongoing studies on the discovery of novel SDH inhibitors as fungicides, novel pyrazole-thiazole carboxamides were designed, synthesized, and evaluated for their antifungal activity. The results indicated that compounds 9ac, 9bf, and 9cb showed excellent in vitro activities against Rhizoctonia cerealis with EC50 values from 1.1 to 4.9 mg/L, superior to that of the commercial fungicide thifluzamide (EC50 = 23.1 mg/L). Compound 9cd (EC50 = 0.8 mg/L) was far more active than thifluzamide (EC50 = 4.9 mg/L) against Sclerotinia sclerotiorum. Compound 9ac exhibited promising in vivo activity against Rhizoctonia solani (90% at 10 mg/L), which was better than that of thifluzamide (80% at 10 mg/L). The field experiment showed that compound 9ac had 74.4% efficacy against Rhizoctonia solani on the 15th day after two consecutive sprayings at an application rate of 4.80 g a.i./667 m2, which was close to that of thifluzamide (83.3%). Furthermore, molecular docking explained the possible binding mode of compound 9ac in the RcSDH active site. Our studies indicated that the pyrazole-thiazole carboxamide hybrid is a new scaffold of SDH inhibitors.
Collapse
Affiliation(s)
- Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lixin Cao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaofeng Guo
- College of Biology, Hunan University, Changsha 410082, P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Vasiliy A Bakulev
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur J Med Chem 2019; 180:486-508. [PMID: 31330449 DOI: 10.1016/j.ejmech.2019.07.043] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
From many decades, S-heterocycles have maintained their status as an important part and core of FDA approved drugs and medicinally active compounds. With exhaustive exploration of nitrogen heterocycles in medicinal chemistry, researchers have shifted their interest towards other heterocycles, especially, S-heterocycles. Thus several attempts have been made to synthesize a variety of new sulphur containing compounds with high medicinal value and low toxicity profile, in comparison to previous N-heterocycles. Till today, S-heterocycle containing compounds have been largely reported as anticancer, antidiabetic, antimicrobial, antihypertension, antivral, antinflammatory etc. In this review, the authors have tried to provide a critical analysis of synthesis and medicinal attributes of sulphur containing heterocycles such as thiirane, thiophene, thiazole, thiopyran, thiazolidine etc reported within last five years to emphasize the significance and usefulness of these S-heterocycles in the drug discovery process.
Collapse
Affiliation(s)
- Shelly Pathania
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India; Research Scholar, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, 151001, India
| | - Raj Kumar Narang
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy (ISFCP), Moga, 142001, Punjab, India
| | - Ravindra K Rawal
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, 133207, Haryana, India.
| |
Collapse
|
19
|
Achar TK, Biswas JP, Porey S, Pal T, Ramakrishna K, Maiti S, Maiti D. Palladium-Catalyzed Template Directed C-5 Selective Olefination of Thiazoles. J Org Chem 2019; 84:8315-8321. [DOI: 10.1021/acs.joc.9b01074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tapas Kumar Achar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tapas Pal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kankanala Ramakrishna
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Siddhartha Maiti
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Zhao B, Wang H, Fan Z, Wu Q, Guo X, Zhang N, Yang D, Yu B, Zhou S. Mode of action for a new potential fungicide candidate, 3-(4-Methyl-1,2,3-thiadiazolyl)-6-trichloromethyl-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole by iTRAQ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1603287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Haixia Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
21
|
Guo X, Zhao B, Fan Z, Yang D, Zhang N, Wu Q, Yu B, Zhou S, Kalinina TA, Belskaya NP. Discovery of Novel Thiazole Carboxamides as Antifungal Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1647-1655. [PMID: 30669828 DOI: 10.1021/acs.jafc.8b06935] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To contribute molecular diversity for novel fungicide development, a series of novel thiazole carboxamides were rationally designed, synthesized, and characterized with the succinate dehydrogenase (SDH) as target. Bioassay indicated that compound 6g showed the similar excellent SDH inhibition as that of Thifluzamide with IC50 of 0.56 mg/L and 0.55 mg/L, respectively. Some derivatives displayed improved in vitro fungicidal activities against Rhizoctonia cerealis and Sclerotinia sclerotiorum with EC50 of 1.2-16.4 mg/L and 0.5-1.9 mg/L. Surprisingly, 6g showed promising in vitro fungicidal activities against R. cerealis and S. sclerotiorum with EC50 of 6.2 and 0.6 mg/L, respectively, which was superior to Thifluzamide with the EC50 of 22.1 and 4.4 mg/L, respectively. Additionally, compounds 6c and 6g displayed excellent in vivo fungicidal activities against S. sclerotiorum on Brassica napus L. leaves with protective activity of 75.4% and 67.3% at 2.0 mg/L, respectively, while Thifluzamide without activity at 5.0 mg/L. Transcriptomic analysis of S. sclerotiorum treated with 6g by RNA sequencing indicated the down-regulation of succinate dehydrogenase gene SDHA and SDHB, and the inhibition of the TCA-cycle.
Collapse
Affiliation(s)
- Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry , College of Chemistry, Nankai University , Tianjin 300071 , P. R. China
| | - Tatiana A Kalinina
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , Yeltsin UrFU 620002 , Ekaterinburg , Russia
| | - Nataliya P Belskaya
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin , Yeltsin UrFU 620002 , Ekaterinburg , Russia
| |
Collapse
|
22
|
Wu Q, Zhao B, Fan Z, Guo X, Yang D, Zhang N, Yu B, Zhou S, Zhao J, Chen F. Discovery of Novel Piperidinylthiazole Derivatives As Broad-Spectrum Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1360-1370. [PMID: 30640452 DOI: 10.1021/acs.jafc.8b06054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxathiapiprolin is one of the best active fungicides discovered for oomycetes control. To develop a fungicide candidate with a broad spectrum of activity, 22 new piperidinylthiazole derivatives were designed and synthesized. Compound 5l showed the best activity against Pseudoperonospora cubensis (Berk. et Curt.) Rostov and Phytophthora infestans in vivo with 100% and 80% of inhibition, respectively, at 1 mg/L, and 72.87% of field efficacy against P. cubensis at 1 g ai/667 m2 validated these results. Compound 5i exhibited a broad spectrum of excellent activity against Sclerotinia sclerotiorum with EC50 = 0.30 mg/L (>10 times more active than oxathiapiprolin and azoxystrobin in vitro), good activity against Botrytis cinerea, Cercospora arachidicola, and Gibberella zeae with EC50 of 14.54, 5.57, and 14.03 mg/L in vitro and against P. cubensis and P. infestans with 60% and 30% inhibition rates, respectively, at 1 mg/L in vivo. Mode of action studies by RNA sequencing analysis discovered oxysterol-binding protein (OSBP), chitin synthase (CHS1), and (1,3)-β-glucan synthase (FKS2) as the potent target of 5i against S. sclerotiorum. Quenching studies validated that OSBP was the same target of both 5i and oxathiapiprolin; it was quenched by both of them. Our studies discovered isothiazole-containing piperidinylthiazole as an OSBP target-based novel lead for fungicide development.
Collapse
Affiliation(s)
- Qifan Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Bin Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , P. R. China
| | - Xiaofeng Guo
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Dongyan Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Nailou Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Bin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Shuang Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Jiabao Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Fan Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|