1
|
Tomás-Martínez S, Chen LM, Pabst M, Weissbrodt DG, van Loosdrecht MCM, Lin Y. Enrichment and application of extracellular nonulosonic acids containing polymers of Accumulibacter. Appl Microbiol Biotechnol 2023; 107:931-941. [PMID: 36484828 DOI: 10.1007/s00253-022-12326-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Pseudaminic and legionaminic acids are a subgroup of nonulosonic acids (NulOs) unique to bacterial species. There is a lack of advances in the study of these NulOs due to their complex synthesis and production. Recently, it was seen that "Candidatus Accumulibacter" can produce Pse or Leg analogues as part of its extracellular polymeric substances (EPS). In order to employ a "Ca. Accumulibacter" enrichment as production platform for bacterial sialic acids, it is necessary to determine which fractions of the EPS of "Ca. Accumulibacter" contain NulOs and how to enrich and/or isolate them. We extracted the EPS from granules enriched with "Ca. Accumulibcater" and used size-exclusion chromatography (SEC) to separate them into different molecular weight (MW) fractions. This separation resulted in two high molecular weight (> 5500 kDa) fractions dominated by polysaccharides, with a NulO content up to 4 times higher than the extracted EPS. This suggests that NulOs in "Ca. Accumulibacter" are likely located in high molecular weight polysaccharides. Additionally, it was seen that the extracted EPS and the NulO-rich fractions can bind and neutralize histones. This opens the possibility of EPS and NulO-rich fractions as potential source for sepsis treatment drugs. KEY POINTS: • NulOs in "Ca. Accumulibacter" are likely located in high MW polysaccharides • SEC allows to obtain high MW polysaccharide-rich fractions enriched with NulOs • EPS and the NulOs-rich fractions are a potential source for sepsis treatment drugs.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Le Min Chen
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Lee IM, Tu IF, Yang FL, Wu SH. Bacteriophage Tail-Spike Proteins Enable Detection of Pseudaminic-Acid-Coated Pathogenic Bacteria and Guide the Development of Antiglycan Antibodies with Cross-Species Antibacterial Activity. J Am Chem Soc 2020; 142:19446-19450. [PMID: 33166120 DOI: 10.1021/jacs.0c07314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
3
|
Affiliation(s)
- Kabita Pradhan
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| | - Suvarn S. Kulkarni
- Department of Chemistry Indian Institute of Technology Bombay 400076 Powai Mumbai India
| |
Collapse
|
4
|
Hawsawi M, Pirrone MG, Wickramasinghe A, Crich D. Use of hydroxylamines, hydroxamic acids, oximes and amines as nucleophiles in the Zbiral oxidative deamination of N-acetyl neuraminic acid. Isolation and characterization of novel mono- and disubstitution products. Carbohydr Res 2020; 490:107921. [PMID: 32171977 PMCID: PMC7250565 DOI: 10.1016/j.carres.2020.107921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
The oxidative deamination of N-nitroso N-acetylneuraminic acid (NeuAc) derivatives is a useful reaction for the formation of 5-desamino-5-hydroxy NeuAc derivatives and their stereoisomers. We demonstrated previously that replacement of the classical nucleophile in these reactions, acetic acid, by phenols resulted in a novel double displacement process with substitution of the acetoxy group at the 4-position taking place in addition to that of the 5-acetamido group, for which we postulated a mechanism centered on the formation of a highly reactive vinyl diazonium ion. We now extend these studies to encompass the use of hydroxylamine-based systems and weakly basic amines as nucleophile. We find that the nature of the product depends significantly on the pKa of the nucleophile, with the more acidic species typically affording only substitution at the 5-position, while the less acidic species give mixtures of elimination products and disubstitution products. The use of aniline as nucleophile is of particular note as it affords a novel aziridine spanning positions 4- and 5- of the neuraminic acid skeleton.
Collapse
Affiliation(s)
- Mohammed Hawsawi
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Michael G Pirrone
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Anura Wickramasinghe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA.
| | - David Crich
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA; Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Everson J, Kiefel MJ. Synthesis of Butenolides via a Horner-Wadsworth-Emmons Cascading Dimerization Reaction. J Org Chem 2019; 84:15226-15235. [PMID: 31657574 DOI: 10.1021/acs.joc.9b02015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient synthesis of a range of structurally related butenolides has been observed while we were exploring the substrate-scope of a Horner-Wadsworth-Emmons (HWE) reaction. While aliphatic aldehydes gave the expected HWE product, aromatic aldehydes furnished butenolides, resulting from the dimerization of the HWE product during desilylation of the initially formed HWE adduct. In addition to isolating butenolides in a high yield, we have also determined precisely when dimerization occurs.
Collapse
Affiliation(s)
- Jack Everson
- Institute for Glycomics , Griffith University Gold Coast Campus , Southport , Queensland 4222 , Australia
| | - Milton J Kiefel
- Institute for Glycomics , Griffith University Gold Coast Campus , Southport , Queensland 4222 , Australia
| |
Collapse
|
6
|
Gintner M, Yoneda Y, Schmölzer C, Denner C, Kählig H, Schmid W. A versatile de novo synthesis of legionaminic acid and 4-epi-legionaminic acid starting from d-serine. Carbohydr Res 2019; 474:34-42. [PMID: 30711766 DOI: 10.1016/j.carres.2019.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/17/2023]
Abstract
Legionaminic acid and 4-epi-legionaminic acid are 5,7-diacetamido nonulosonic acids and are assumed to play a crucial role in the virulence of Legionella pneumophila, the causative agent of Legionnaires' disease. Moreover, they are ideal target motifs for the development of vaccines and pathogen detection. Herein, we present a versatile de novo synthesis of legionaminic acid and 4-epi-legionaminic acid. Starting from simple d-serine, the C9-backbone is built up by two CC-bond formation reactions. First, the protected d-serine motif is elongated utilizing a highly stereoselective nitroaldol reaction to give a C6-precursor of desired d-rhamno configuration. Second, an indium-mediated allylation is employed to further elongate the carbon backbone and introduce a masked α-keto acid function.
Collapse
Affiliation(s)
- Manuel Gintner
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria.
| | - Yuko Yoneda
- Facultiy of Agriculture, Shizuoka University, 836, Ohya, Shizuoka, Japan
| | - Christoph Schmölzer
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Christian Denner
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Hanspeter Kählig
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| | - Walther Schmid
- AG Schmid, Institute of Organic Chemistry, University of Vienna, Währinger Straße 38, A-1090, Vienna, Austria
| |
Collapse
|