1
|
Zhou C, Chia GWN, Yong KT. Membrane-intercalating conjugated oligoelectrolytes. Chem Soc Rev 2022; 51:9917-9932. [PMID: 36448452 DOI: 10.1039/d2cs00014h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
By acting as effective biomimetics of the lipid bilayers, membrane-intercalating conjugated oligoelectrolytes (MICOEs) can spontaneously insert themselves into both synthetic lipid bilayers and biological membranes. The modular and intentional molecular design of MICOEs enable a range of applications, such as bioproduction, biocatalysis, biosensing, and therapeutics. This tutorial review provides a structural evolution of MICOEs, which originated from the broader class of conjugated molecules, and analyses the drivers behind this evolutionary process. Various representative applications of MICOEs, accompanied by insights into their molecular design principles, will be reviewed separately. Perspectives on the current challenges and opportunities in research on MICOEs will be discussed at the end of the review to highlight their potential as unconventional and value-added materials for biological systems.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China. .,Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Geraldine W N Chia
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney 2006, New South Wales, Australia.
| |
Collapse
|
2
|
Transient Complexity of E. coli Lipidome Is Explained by Fatty Acyl Synthesis and Cyclopropanation. Metabolites 2022; 12:metabo12090784. [PMID: 36144187 PMCID: PMC9500627 DOI: 10.3390/metabo12090784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.
Collapse
|
3
|
Pannwitz A, Saaring H, Beztsinna N, Li X, Siegler MA, Bonnet S. Mimicking Photosystem I with a Transmembrane Light Harvester and Energy Transfer-Induced Photoreduction in Phospholipid Bilayers. Chemistry 2021; 27:3013-3018. [PMID: 32743875 PMCID: PMC7898337 DOI: 10.1002/chem.202003391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Photosystem I (PS I) is a transmembrane protein that assembles perpendicular to the membrane, and performs light harvesting, energy transfer, and electron transfer to a final, water-soluble electron acceptor. We present here a supramolecular model of it formed by a bicationic oligofluorene 12+ bound to the bisanionic photoredox catalyst eosin Y (EY2- ) in phospholipid bilayers. According to confocal microscopy, molecular modeling, and time dependent density functional theory calculations, 12+ prefers to align perpendicularly to the lipid bilayer. In presence of EY2- , a strong complex is formed (Ka =2.1±0.1×106 m-1 ), which upon excitation of 12+ leads to efficient energy transfer to EY2- . Follow-up electron transfer from the excited state of EY2- to the water-soluble electron donor EDTA was shown via UV-Vis absorption spectroscopy. Overall, controlled self-assembly and photochemistry within the membrane provides an unprecedented yet simple synthetic functional mimic of PS I.
Collapse
Affiliation(s)
- Andrea Pannwitz
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Holden Saaring
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Nataliia Beztsinna
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Xinmeng Li
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| | - Maxime A. Siegler
- Johns Hopkins UniversityDepartment of ChemistryMaryland21218BaltimoreUSA
| | - Sylvestre Bonnet
- Leiden UniversityLeiden Institute of ChemistryEinsteinweg 55, 2333CCLeidenThe Netherlands
| |
Collapse
|
4
|
Leifert D, Moreland AS, Limwongyut J, Mikhailovsky AA, Bazan GC. Photoswitchable Conjugated Oligoelectrolytes for a Light-Induced Change of Membrane Morphology. Angew Chem Int Ed Engl 2020; 59:20333-20337. [PMID: 32596843 DOI: 10.1002/anie.202004448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/05/2020] [Indexed: 11/07/2022]
Abstract
The synthesis of a new conjugated oligoelectrolyte (COE), namely DSAzB, is described, which contains a conjugated core bearing a diazene moiety in the center of its electronically delocalized structure. Similar to structurally related phenylenevinylene-based COEs, DSAzB readily intercalates into model and natural lipid bilayer membranes. Photoinduced isomerization transforms the linear trans COE into a bent or C-shape form. It is thereby possible to introduce DSAzB into the bilayer of a cell and disrupt its integrity by irradiation with light. This leads to controlled permeabilization of membranes, as demonstrated by the release of calcein from DMPG/DMPC vesicles and by propidium iodide influx experiments on S. epidermidis. Both experiments support that the permeabilization is selective for the light stimulus, highly efficient, and repeatable. Target-selective and photoinduced actions demonstrated by DSAzB may have broad applications in biocatalysis and related biotechnologies.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Alexander A Mikhailovsky
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, Materials and Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Leifert D, Moreland AS, Limwongyut J, Mikhailovsky AA, Bazan GC. Photoswitchable Conjugated Oligoelectrolytes for a Light‐Induced Change of Membrane Morphology. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Germany
| | - Alex S. Moreland
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Jakkarin Limwongyut
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Alexander A. Mikhailovsky
- Center for Polymers and Organic Solids Department of Chemistry and Biochemistry, Materials and Physics University of California Santa Barbara CA 93106 USA
| | - Guillermo C. Bazan
- Departments of Chemistry and Chemical Engineering National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
6
|
Zamani E, Johnson TJ, Chatterjee S, Immethun C, Sarella A, Saha R, Dishari SK. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49346-49361. [PMID: 33089982 PMCID: PMC8926324 DOI: 10.1021/acsami.0c12038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cationic, π-conjugated oligo-/polyelectrolytes (CCOEs/CCPEs) have shown great potential as antimicrobial materials to fight against antibiotic resistance. In this work, we treated wild-type and ampicillin-resistant (amp-resistant) Escherichia coli (E. coli) with a promising cationic, π-conjugated polyelectrolyte (P1) with a phenylene-based backbone and investigated the resulting morphological, mechanical, and compositional changes of the outer membrane of bacteria in great detail. The cationic quaternary amine groups of P1 led to electrostatic interactions with negatively charged moieties within the outer membrane of bacteria. Using atomic force microscopy (AFM), high-resolution transmission electron microscopy (TEM), we showed that due to this treatment, the bacterial outer membrane became rougher, decreased in stiffness/elastic modulus (AFM nanoindentation), formed blebs, and released vesicles near the cells. These evidences, in addition to increased staining of the P1-treated cell membrane by lipophilic dye Nile Red (confocal laser scanning microscopy (CLSM)), suggested loosening/disruption of packing of the outer cell envelope and release and exposure of lipid-based components. Lipidomics and fatty acid analysis confirmed a significant loss of phosphate-based outer membrane lipids and fatty acids, some of which are critically needed to maintain cell wall integrity and mechanical strength. Lipidomics and UV-vis analysis also confirmed that the extracellular vesicles released upon treatment (AFM) are composed of lipids and cationic P1. Such surface alterations (vesicle/bleb formation) and release of lipids/fatty acids upon treatment were effective enough to inhibit further growth of E. coli cells without completely disintegrating the cells and have been known as a defense mechanism of the cells against cationic antimicrobial agents.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Tyler J. Johnson
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Zamani E, Chatterjee S, Changa T, Immethun C, Sarella A, Saha R, Dishari SK. Mechanistic Understanding of the Interactions of Cationic Conjugated Oligo- and Polyelectrolytes with Wild-type and Ampicillin-resistant Escherichia coli. Sci Rep 2019; 9:20411. [PMID: 31892737 PMCID: PMC6938524 DOI: 10.1038/s41598-019-56946-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/06/2019] [Indexed: 01/10/2023] Open
Abstract
An in-depth understanding of cell-drug binding modes and action mechanisms can potentially guide the future design of novel drugs and antimicrobial materials and help to combat antibiotic resistance. Light-harvesting π-conjugated molecules have been demonstrated for their antimicrobial effects, but their impact on bacterial outer cell envelope needs to be studied in detail. Here, we synthesized poly(phenylene) based model cationic conjugated oligo- (2QA-CCOE, 4QA-CCOE) and polyelectrolytes (CCPE), and systematically explored their interactions with the outer cell membrane of wild-type and ampicillin (amp)-resistant Gram-negative bacteria, Escherichia coli (E. coli). Incubation of the E. coli cells in CCOE/CCPE solution inhibited the subsequent bacterial growth in LB media. About 99% growth inhibition was achieved if amp-resistant E. coli was treated for ~3-5 min, 1 h and 6 h with 100 μM of CCPE, 4QA-CCOE, and 2QA-CCOE solutions, respectively. Interestingly, these CCPE and CCOEs inhibited the growth of both wild-type and amp-resistant E. coli to a similar extent. A large surface charge reversal of bacteria upon treatment with CCPE suggested the formation of a coating of CCPE on the outer surface of bacteria; while a low reversal of bacterial surface charge suggested intercalation of CCOEs within the lipid bilayer of bacteria.
Collapse
Affiliation(s)
- Ehsan Zamani
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Shyambo Chatterjee
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Taity Changa
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Cheryl Immethun
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Anandakumar Sarella
- Nebraska Center for Materials and Nanoscience, Voelte-Keegan Nanoscience Research Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0298, United States
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| | - Shudipto Konika Dishari
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| |
Collapse
|