1
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
2
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
3
|
Wang Q, Li H, Wu T, Yu B, Cong H, Shen Y. Nanodrugs based on co-delivery strategies to combat cisplatin resistance. J Control Release 2024; 370:14-42. [PMID: 38615892 DOI: 10.1016/j.jconrel.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Cisplatin (CDDP), as a broad-spectrum anticancer drug, is able to bind to DNA and inhibit cell division. Despite the widespread use of cisplatin since its discovery, cisplatin resistance developed during prolonged chemotherapy, similar to other small molecule chemotherapeutic agents, severely limits its clinical application. Cisplatin resistance in cancer cells is mainly caused by three reasons: DNA repair, decreased cisplatin uptake/increased efflux, and cisplatin inactivation. In earlier combination therapies, the emergence of multidrug resistance (MDR) in cancer cells prevented the achievement of the desired therapeutic effect even with the accurate combination of two chemotherapeutic drugs. Therefore, combination therapy using nanocarriers for co-delivery of drugs is considered to be ideal for alleviating cisplatin resistance and reducing cisplatin-related toxicity in cancer cells. This article provides an overview of the design of cisplatin nano-drugs used to combat cancer cell resistance, elucidates the mechanisms of action of cisplatin and the pathways through which cancer cells develop resistance, and finally discusses the design of drugs and related carriers that can synergistically reduce cancer resistance when combined with cisplatin.
Collapse
Affiliation(s)
- Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio-nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
4
|
Cai X, Zhang L, Chen S. Editorial: Cancer treatment and early detection targeting HER receptors, Volume II. Front Mol Biosci 2023; 10:1229765. [PMID: 37426424 PMCID: PMC10325823 DOI: 10.3389/fmolb.2023.1229765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin, China
| | - Shengxi Chen
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Sharoyko VV, Mikolaichuk OV, Shemchuk OS, O. E. Abdelhali A, Potanin AA, Luttsev MD, Dadadzanov DR, Vartanyan TA, Petrov AV, Yu. Shasherina A, Murin IV, Maystrenko DN, Molchanov OE, Semenov KN. Novel non-covalent conjugate based on graphene oxide and alkylating agent from 1,3,5-triazine class. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Zhang F, Zhang C, Fu S, Liu H, Han M, Fan X, Zhang H, Li W. Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3024. [PMID: 36080060 PMCID: PMC9457696 DOI: 10.3390/nano12173024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Amphiphilic core-shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core-shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells.
Collapse
Affiliation(s)
- Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Chao Zhang
- Department of Life Science, Hengshui University, Hengshui 053000, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Huandi Liu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Fan
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Label-free DNAzyme for highly sensitive detection of multiple biomolecules in real samples through target-triggered catalytic cleavage reactions with auramine O’s discriminated fluorescence emission. Anal Bioanal Chem 2022; 414:4021-4037. [DOI: 10.1007/s00216-022-04061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
|
8
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
9
|
Sultan MH, Moni SS, Madkhali OA, Bakkari MA, Alshahrani S, Alqahtani SS, Alhakamy NA, Mohan S, Ghazwani M, Bukhary HA, Almoshari Y, Salawi A, Alshamrani M. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci Rep 2022; 12:468. [PMID: 35013493 PMCID: PMC8748743 DOI: 10.1038/s41598-021-04427-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
The present study was carried out to develop cisplatin-loaded chitosan nanoparticles (CCNP) and cisplatin-loaded chitosan nanoparticle surface linked to rituximab (mAbCCNP) as targeted delivery formulations. The two formulations (CCNP and mAbCCNP) exhibited significant physicochemical properties. The zetapotential (ZP) values of CCNP and mAbCCNP were 30.50 ± 5.64 and 26.90 ± 9.09 mV, respectively; while their particle sizes were 308.10 ± 1.10 and 349.40 ± 3.20 z.d.nm, respectively. The poly dispersity index (PDI) of CCNP was 0.257 ± 0.030 (66.6% PDI), while that of mAbCCNP was 0.444 ± 0.007 (57.60% PDI). Differential scanning calorimetry (DSC) revealed that CCNP had endothermic peaks at temperatures ranging from 135.50 to 157.69 °C. A sharp exothermic peak was observed at 95.79 °C, and an endothermic peak was observed at 166.60 °C. The XRD study on CCNP and mAbCCNP revealed distinct peaks at 2θ. Four peaks at 35.38°, 37.47°, 49.29°, and 59.94° corresponded to CCNP, while three distinct peaks at 36.6°, 49.12°, and 55.08° corresponded to mAbCCNP. The in vitro release of cisplatin from nanoparticles followed zero order kinetics in both CCNP and mAbCCNP. The profile for CCNP showed 43.80% release of cisplatin in 6 h (R2 = 0.9322), indicating linearity of release with minimal deviation. However, the release profile of mAbCCNP showed 22.52% release in 4 h (R2 = 0.9416), indicating linearity with sustained release. In vitro cytotoxicity studies on MCF-7 ATCC human breast cancer cell line showed that CCNP exerted good cytotoxicity, with IC50 of 4.085 ± 0.065 µg/mL. However, mAbCCNP did not elicit any cytotoxic effect. At a dose of 4.00 µg/mL cisplatin induced early apoptosis and late apoptosis, chromatin condensation, while it produced secondary necrosis at a dose of 8.00 µg/mL. Potential delivery system for cisplatin CCNP and mAbCCNP were successfully formulated. The results indicated that CCNP was a more successful formulation than mAbCCNP due to lack of specificity of rituximab against MCF-7 ATCC human breast cancer cells.
Collapse
Affiliation(s)
- Muhammad H Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Sivakumar S Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, 45142, Kingdom of Saudi Arabia.
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Ali Bakkari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saeed Alshahrani
- Pharmacology and Toxicology Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Saad S Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abudlaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abudlaziz University, Jeddah, 21589, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Haitham A Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
10
|
Shipunova VO, Deyev SM. Artificial Scaffold Polypeptides As an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. Acta Naturae 2022; 14:54-72. [PMID: 35441046 PMCID: PMC9013437 DOI: 10.32607/actanaturae.11545] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
The use of traditional tools for the targeted delivery of nanostructures, such as antibodies, transferrin, lectins, or aptamers, often leads to an entire range of undesirable effects. The large size of antibodies often does not allow one to reach the required number of molecules on the surface of nanostructures during modification, and the constant domains of heavy chains, due to their effector functions, can induce phagocytosis. In the recent two decades, targeted polypeptide scaffold molecules of a non-immunoglobulin nature, antibody mimetics, have emerged as much more effective targeting tools. They are small in size (3-20 kDa), possess high affinity (from subnano- to femtomolar binding constants), low immunogenicity, and exceptional thermodynamic stability. These molecules can be effectively produced in bacterial cells, and, using genetic engineering manipulations, it is possible to create multispecific fusion proteins for the targeting of nanoparticles to cells with a given molecular portrait, which makes scaffold polypeptides an optimal tool for theranostics.
Collapse
Affiliation(s)
- V. O. Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - S. M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
11
|
Wang Q, He Z, Zhu H, Gao W, Zhang N, Li J, Yan J, He B, Ye X. Targeting drug delivery and efficient lysosomal escape for chemo-photodynamic cancer therapy by a peptide/DNA nanocomplex. J Mater Chem B 2021; 10:438-449. [PMID: 34951442 DOI: 10.1039/d1tb02441h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A peptide/DNA nanocomplex was developed for the targeted delivery of chemotherapeutics and photosensitizers to cancer cells for efficient combination therapy. The chemotherapeutic drug doxorubicin (DOX) and the photosensitizer 5,10,15,20-tetra-(1-methylpyridine-4-yl)-porphyrin (TMPyP4) were physically incorporated by an aptamer (AS1411)-modified tetrahedral DNA nanostructure, where the tetrahedral DNA and aptamer-induced G-quadruplex provide binding sites of DOX and TMPyP4. The co-loaded 3A-TDN/DT displayed a targeted uptake by HeLa cancer cells through the high affinity and specificity between AS1411 and nucleolin, a protein overexpressed on many types of cancer cells. A polycationic polymer, mPEG-PAsp(TECH), was synthesized to complex with the DNA nanostructure to efficiently escape from lysosomes via the proton sponge effect upon the enhanced internalization by tumor cells. Under the irradiation of 660 nm laser light, TMPyP4 induced an upregulation of intracellular reactive oxygen species, which combined with DOX to fulfill the efficient inhibition of HeLa cells. Our study demonstrated a biocompatible peptide/DNA composite nanoplatform for combinational cancer therapy via the targeted delivery of therapeutic agents and efficient lysosomal escape.
Collapse
Affiliation(s)
- Qiusheng Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China. .,National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Hai Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jianqin Yan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
12
|
Seitz I, Shaukat A, Nurmi K, Ijäs H, Hirvonen J, Santos HA, Kostiainen MA, Linko V. Prospective Cancer Therapies Using Stimuli-Responsive DNA Nanostructures. Macromol Biosci 2021; 21:e2100272. [PMID: 34614301 DOI: 10.1002/mabi.202100272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Nanostructures based on DNA self-assembly present an innovative way to address the increasing need for target-specific delivery of therapeutic molecules. Currently, most of the chemotherapeutics being used in clinical practice have undesired and exceedingly high off-target toxicity. This is a challenge in particular for small molecules, and hence, developing robust and effective methods to lower these side effects and enhance the antitumor activity is of paramount importance. Prospectively, these issues could be tackled with the help of DNA nanotechnology, which provides a route for the fabrication of custom, biocompatible, and multimodal structures, which can, to some extent, resist nuclease degradation and survive in the cellular environment. Similar to widely employed liposomal products, the DNA nanostructures (DNs) are loaded with selected drugs, and then by employing a specific stimulus, the payload can be released at its target region. This review explores several strategies and triggers to achieve targeted delivery of DNs. Notably, different modalities are explained through which DNs can interact with their respective targets as well as how structural changes triggered by external stimuli can be used to achieve the display or release of the cargo. Furthermore, the prospects and challenges of this technology are highlighted.
Collapse
Affiliation(s)
- Iris Seitz
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Ahmed Shaukat
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland
| | - Kurt Nurmi
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland.,Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, 00076, Finland.,HYBER Centre, Department of Applied Physics, Aalto University, P.O. Box 15100, Aalto, 00076, Finland
| |
Collapse
|
13
|
Zhang F, Yin J, Zhang C, Han M, Wang X, Fu S, Du J, Zhang H, Li W. Affibody-Conjugated RALA Polymers Delivering Oligomeric 5-Fluorodeoxyuridine for Targeted Therapy of HER2 Overexpressing Gastric Cancer. Macromol Biosci 2020; 20:e2000083. [PMID: 32558229 DOI: 10.1002/mabi.202000083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/30/2020] [Indexed: 11/10/2022]
Abstract
Affibody-conjugated RALA (affi-RA) are designed for delivering oligomeric 5-fluorodeoxyuridine (FUdR, metabolite of 5-FU) strand to raise the selectivity of 5-fluorouracil (5-FU), decrease its toxicity and improve its suboptimal therapeutic efficacy. The nanodrugs, FUdR@affi-RA, are spontaneously assembled by electrostatic interaction between positively charged affi-RA and negatively charged FUdR15 -strands (15 consecutive FUdR). FUdR@affi-RA exhibits excellent stability under simulated physiological conditions. Compared with free FUdR, FUdR@affi-RA shows excellent targeting and higher cytotoxicity in human epidermal growth factor receptor 2 (HER2) overexpressing gastric cancer N87 cells. Moreover, the anticancer mechanism studies reveal that FUdR@affi-RA enhances the expression and activity of apoptosis-associated proteins in the Bcl-2/Bax-caspase 8,9-caspase 3 apoptotic pathway induced by FUdR. This study indicates that the fusion vector, affi-RA, presents a promising delivery system platform for nucleoside analogue drugs and provides a new strategy for the development of therapeutics of cancer treatment.
Collapse
Affiliation(s)
- Fanghua Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jiwei Yin
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Chao Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Mengnan Han
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Xuming Wang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Shuangqing Fu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jie Du
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Honglei Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Wei Li
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| |
Collapse
|
14
|
Ji X, Chen Q, Arutla V, Khdour O, Hu QY, Chen S. Double-component diazeniumdiolate derivatives as anti-cancer agents. Bioorg Med Chem 2020; 28:115405. [PMID: 32156499 DOI: 10.1016/j.bmc.2020.115405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
In this study, we synthesized a series of double-component O2-aryl diazeniumdiolate (DDNO) derivatives, of which each molecule can release up to four nitric oxide molecules. These compounds showed cytotoxic activities to cancer cells, such as human leukemia, breast cancer and lung cancer. Among them, compound 1 (DDNO-1) showed the highest specific activity to human leukemia cells. It induced cell apopotosis and arrest cell cycle of G2/M phase. The JNK and p38 protein kinases were activated by compound 1 to induce cancer cell apoptosis. Compound 1 also increased pro-apoptotic Bax level, which is a same function compared to a reported NO donor, JS-K. More interestingly, it decreased the level of an anti-apoptotic member Bcl-2, which is an opposite effect compared to JS-K. Compound 1 could be developed as a new anti-cancer agent since it increases the Bax/Bcl-2 ratio to overcome the drug resistance.
Collapse
Affiliation(s)
- Xun Ji
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Qi Chen
- Department of Central Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, PR China
| | - Viswanath Arutla
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Omar Khdour
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA
| | - Qiong-Ying Hu
- Department of Central Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, PR China; School of Medcine, Taizhou University, Taizhou, Zhejiang, PR China.
| | - Shengxi Chen
- Biodesign Center for BioEnergetics, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
15
|
Dong Z, Shen Y, Zhao S, Wang X, Han M, Zhao N, Ao H, Guo Y. Influence of Hydrophobic Chains in Nanocarriers on Antitumor Efficacy of Docetaxel Nanoparticles. Mol Pharm 2020; 17:1205-1214. [PMID: 32073273 DOI: 10.1021/acs.molpharmaceut.9b01228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The composition of amphiphilic nanocarriers can affect the antitumor efficacy of drug-loaded nanoparticles and should be researched systematically. In this paper, to study the influence of hydrophobic chains, an amphiphilic copolymer (PEG45PCL17) and hydrophilic PEG (PEG45) were utilized as nanocarriers to prepare docetaxel-loaded nanoparticles (DTX/PEG45PCL17 nanoparticles and DTX/PEG45 nanoparticles) through an antisolvent precipitation method. The two DTX nanoparticles presented a similar drug loading content of approximately 60% and a sheet-like morphology. During the preparation procedure, the drug loading content affected the morphology of DTX nanoparticles, and the nanocarrier composition influenced the particle size. Compared with DTX/PEG45 nanoparticles, DTX/PEG45PCL17 nanoparticles showed a smaller mean diameter and better in vitro and in vivo antitumor activity. The cytotoxicity of DTX/PEG45PCL17 nanoparticles against 4T1 cells was 1.31 μg mL-1, 3.4-fold lower than that of DTX/PEG45 nanoparticles. More importantly, DTX/PEG45PCL17 nanoparticles showed significantly higher antitumor activity in vivo, with an inhibition rate over 80%, 1.5-fold higher than that of DTX/PEG45 nanoparticles. Based on these results, antitumor activity appears to be significantly affected by the particle size, which was determined by the composition of the nanocarrier. In summary, to improve antitumor efficacy, the amphiphilic structure should be considered and optimized in the design of nanocarriers.
Collapse
Affiliation(s)
- Zhengqi Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yiping Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.,Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Shuang Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China.,Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, No. 138, Tongda Street, Daoli District, Harbin 150076, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Ning Zhao
- Department of Pharmacy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1, Xiyuancaochang, Haidian District, Beijing 100091, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|