1
|
Yun SY, Lee S, Jin X, Soon A, Hwang S. Ammonolysis-Driven Exsolution of Ru Nanoparticle Embedded in Conductive Metal Nitride Matrix to Boost Electrocatalyst Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309819. [PMID: 38582505 PMCID: PMC11200002 DOI: 10.1002/advs.202309819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/13/2024] [Indexed: 04/08/2024]
Abstract
Exsolution is an effective method for synthesizing robust nanostructured metal-based functional materials. However, no studies have investigated the exsolution of metal nanoparticles into metal nitride substrates. In this study, a versatile nitridation-driven exsolution method is developed for embedding catalytically active metal nanoparticles in conductive metal nitride substrates via the ammonolysis of multimetallic oxides. Using this approach, Ti1-xRuxO2 nanowires are phase-transformed into holey TiN nanotubes embedded with exsolved Ru nanoparticles. These Ru-exsolved holey TiN nanotubes exhibit outstanding electrocatalytic activity for the hydrogen evolution reaction with excellent durability, which is significantly higher than that of Ru-deposited TiN nanotubes. The enhanced stability of the Ru-exsolved TiN nanotubes can be attributed to the Ru nanoparticles embedded in the robust metal nitride matrix and the formation of interfacial Ti3+─N─Ru4+ bonds. Density functional theory calculations reveal that the exsolved Ru nanoparticles have a lower d-band center position and optimized hydrogen affinity than deposited Ru nanoparticles, indicating the superior electrocatalyst performance of the former. In situ Raman spectroscopic analysis reveals that the electron transfer from TiN to Ru nanoparticles is enhanced during the electrocatalytic process. The proposed approach opens a new avenue for stabilizing diverse metal nanostructures in many conductive matrices like metal phosphides and chalcogenides.
Collapse
Affiliation(s)
- So Yeon Yun
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sangseob Lee
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Xiaoyan Jin
- Department of Applied ChemistryUniversity of SeoulSeoul02504Republic of Korea
| | - Aloysius Soon
- Center for Artificial Synesthesia Materials DiscoveryDepartment of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
2
|
Single Metal Atoms Embedded in the Surface of Pt Nanocatalysts: The Effect of Temperature and Hydrogen Pressure. Catalysts 2022. [DOI: 10.3390/catal12121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Embedding energetically stable single metal atoms in the surface of Pt nanocatalysts exposed to varied temperature (T) and hydrogen pressure (P) could open up new possibilities in selective and dynamical engineering of alloyed Pt catalysts, particularly interesting for hydrogenation reactions. In this work, an environmental segregation energy model is developed to predict the stability and the surface composition evolution of 24 Metal M-promoted Pt surfaces (with M: Cu, Ag, Au, Ni, Pd, Co, Rh and Ir) under varied T and P. Counterintuitive to expectations, the results show that the more reactive alloy component (i.e., the one forming the strongest chemical bond with the hydrogen) is not the one that segregates to the surface. Moreover, using DFT-based Multi-Scaled Reconstruction (MSR) method and by extrapolation of M-promoted Pt nanoparticles (NPs), the shape dynamics of M-Pt are investigated under the same ranges of T and P. The results show that under low hydrogen pressure and high temperature ranges, Ag and Au—single atoms (and Cu to a less extent) are energetically stable on the surface of truncated octahedral and/or cuboctahedral shaped NPs. This indicated that coinage single-atoms might be used to tune the catalytic properties of Pt surface under hydrogen media. In contrast, bulk stability within wide range of temperature and pressure is predicted for all other M-single atoms, which might act as bulk promoters. This work provides insightful guides and understandings of M-promoted Pt NPs by predicting both the evolution of the shape and the surface compositions under reaction gas condition.
Collapse
|
3
|
López-Goerne TM, Padilla-Godínez FJ, Castellanos M, Perez-Davalos LA. Catalytic nanomedicine: a brief review of bionanocatalysts. Nanomedicine (Lond) 2022; 17:1131-1156. [DOI: 10.2217/nnm-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Catalytic nanomedicine is a research area and source of disruptive technology that studies the application of bionanocatalysts (organically functionalized mesoporous nanostructured materials with catalytic properties) in diverse areas such as disinfection, tissue regeneration in chronic wounds and oncology. This paper reviews the emergence of catalytic nanomedicine in 2006, its basic principles, main achievements and future perspectives, as well as giving a summary of the knowledge gaps that need to be addressed to exploit the full potential of this novel discipline. This review intends to foster knowledge dissemination regarding catalytic nanomedicine, and to encourage further research to elucidate the mechanisms and possible applications of these nanomaterials.
Collapse
Affiliation(s)
- Tessy M López-Goerne
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Francisco J Padilla-Godínez
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Department of Molecular Neuropathology, Institute of Cell Physiology, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Mariana Castellanos
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| | - Luis A Perez-Davalos
- Laboratory of Nanotechnology & Nanomedicine, Department of Health Care, Autonomous Metropolitan University-Xochimilco, Mexico City, 04960, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, 04510, Mexico
| |
Collapse
|
4
|
Camposeco R, Zanella R. Multifunctional Pt-Cu/TiO2 nanostructures and their performance in oxidation of soot, formaldehyde, and carbon monoxide reactions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Wu Y, Xu Y, Zhang Y, Feng J, Li Y, Lan J, Cheng X. Fabrication of NiCoP decorated TiO2/polypyrrole nanocomposites for the effective photocatalytic degradation of tetracycline. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Jamil YM, Awad MA, Al-Maydama HM. Physicochemical properties and antibacterial activity of Pt nanoparticles on TiO2 nanotubes as electrocatalyst for methanol oxidation reaction. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Torres AE, Rodríguez-Pineda J, Zanella R. Relevance of Dispersion and the Electronic Spin in the DFT + U Approach for the Description of Pristine and Defective TiO 2 Anatase. ACS OMEGA 2021; 6:23170-23180. [PMID: 34549118 PMCID: PMC8444202 DOI: 10.1021/acsomega.1c02761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 05/05/2023]
Abstract
A density functional theory + U systematic theoretical study was performed on the geometry, electronic structure, and energies of properties relevant for the chemical reactivity of TiO2 anatase. The effects of D3(BJ) dispersion correction and the Hubbard U value over the energies corresponding to the TiO2/Ti2O3 reduction reaction, the oxygen vacancy formation, and transition-metal doping were analyzed to attain an accurate and well-balanced description of these properties. It is suggested to fit the Hubbard correction for the metal dopant atom by taking as reference the observed low spin-high spin (HS) energy difference for the metal atom. PBEsol-D3 calculations revealed a distinct electronic ground state for the yttrium-doped TiO2 anatase surface depending upon the type of doping and interstitial or substitutional defects. Based on the calculations, it was found that a HS state explains the observed ferromagnetism in cobalt-substituted TiO2 anatase. The results presented herein might be relevant for further catalytic studies on TiO2 anatase using a large surface model that would be worthwhile for heterogeneous catalysis simulations.
Collapse
Affiliation(s)
- Ana E. Torres
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 México City, Mexico
| | - Janatan Rodríguez-Pineda
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 México City, Mexico
| | - Rodolfo Zanella
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510 México City, Mexico
| |
Collapse
|
8
|
Ponticorvo E, Iuliano M, Funicello N, De Pasquale S, Sarno M. Magnetic resonance imaging during the templated synthesis of mesoporous TiO2 supporting Pt nanoparticles for MOR. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Zhu X, Hu Z, Huang M, Zhao Y, Qu J, Hu S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Shahvaranfard F, Ghigna P, Minguzzi A, Wierzbicka E, Schmuki P, Altomare M. Dewetting of PtCu Nanoalloys on TiO 2 Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38211-38221. [PMID: 32706239 DOI: 10.1021/acsami.0c10968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.
Collapse
Affiliation(s)
- Fahimeh Shahvaranfard
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, 27100 Pavia, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Ewa Wierzbicka
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Patrik Schmuki
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, 80203 Jeddah, Kingdom of Saudi Arabia
| | - Marco Altomare
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Zhu L, Cui J, Ruan L, Zhang H, Yu C, Chen BH, Xiao Q. Tiny Ruthenium‐Cobalt‐Cobalt Hydroxide Nanoparticles Supported on Graphene for Efficiently Catalyzing Naphthalene Complete Hydrogenation. ChemistrySelect 2019. [DOI: 10.1002/slct.201900828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lihua Zhu
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science & Technology Normal University Nanchang 330013 China
- School of Metallurgy and Chemical EngineeringJiangxi University of Science and Technology Ganzhou 341000 China
| | - Jingjing Cui
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science & Technology Normal University Nanchang 330013 China
| | - Luna Ruan
- School of Metallurgy and Chemical EngineeringJiangxi University of Science and Technology Ganzhou 341000 China
| | - Huan Zhang
- School of Metallurgy and Chemical EngineeringJiangxi University of Science and Technology Ganzhou 341000 China
| | - Changlin Yu
- School of Metallurgy and Chemical EngineeringJiangxi University of Science and Technology Ganzhou 341000 China
| | - Bing Hui Chen
- Department of Chemical and Biochemical EngineeringNational Engineering Laboratory for GreenProductions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic ChemistryJiangxi Science & Technology Normal University Nanchang 330013 China
| |
Collapse
|