1
|
Jantarawong S, Swangphon P, Lauterbach N, Panichayupakaranant P, Pengjam Y. Modified Curcuminoid-Rich Extract Liposomal CRE-SDInhibits Osteoclastogenesis via the Canonical NF-κB Signaling Pathway. Pharmaceutics 2023; 15:2248. [PMID: 37765217 PMCID: PMC10537735 DOI: 10.3390/pharmaceutics15092248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Curcuminoids, namely curcumin, demethoxycurcumin, and bisdemethoxycurcumin, are the major active compounds found in Curcuma longa L. (turmeric). Although their suppressive effects on bone resorption have been demonstrated, their pharmacokinetic disadvantages remain a concern. Herein, we utilized solid dispersion of a curcuminoid-rich extract (CRE), comprising such curcuminoids, to prepare CRE-SD; subsequently, we performed liposome encapsulation of the CRE-SD to yield liposomal CRE-SD. In vitro release assessment revealed that a lower cumulative mass percentage of CRE-SD was released from liposomal CRE-SD than from CRE-SD samples. After culture of murine RANKL-stimulated RAW 264.7 macrophages, our in vitro examinations confirmed that liposomal CRE-SD may impede osteoclastogenesis by suppressing p65 and IκBα phosphorylation, together with nuclear translocation and transcriptional activity of phosphorylated p65. Blind docking simulations showed the high binding affinity between curcuminoids and the IκBα/p50/p65 protein complex, along with many intermolecular interactions, which corroborated our in vitro findings. Therefore, liposomal CRE-SD can inhibit osteoclastogenesis via the canonical NF-κB signaling pathway, suggesting its pharmacological potential for treating bone diseases with excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Sompot Jantarawong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Piyawut Swangphon
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Natda Lauterbach
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yutthana Pengjam
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (N.L.)
| |
Collapse
|
2
|
Synthesis and anti-ovarian cancer effects of benzimidazole-2-substituted pyridine and phenyl propenone derivatives. Future Med Chem 2022; 14:1835-1846. [PMID: 36373543 DOI: 10.4155/fmc-2022-0244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Given the benzimidazole derivatives have anti-ovarian cancer effects, the authors aimed to determine whether benzimidazole-2-substituted pyridine and phenyl propenone derivatives exert anti-ovarian cancer activity. Materials & methods: 21 derivatives were synthesized and assayed for their antiproliferative activities. Western blotting in A2780 cells was used to detect the effects of compound A-6 on apoptosis-related proteins. Invasion, migration and apoptosis were assayed in SKOV3 cells treated with A-6. The in vivo activity was also examined. Results: A-6 could inhibit proliferation, invasion and migration and induce apoptosis in SKOV3 cells. Additionally, A-6 had potent inhibitory activity in a xenograft mouse model. Conclusion: A-6 shows potent efficacy in the treatment of ovarian cancer and may be a potential antitumor agent.
Collapse
|
3
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
4
|
Natesan V, Kim SJ. Metabolic Bone Diseases and New Drug Developments. Biomol Ther (Seoul) 2022; 30:309-319. [PMID: 35342038 PMCID: PMC9252877 DOI: 10.4062/biomolther.2022.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic bone diseases are serious health issues worldwide, since several million individuals over the age of 50 are at risk of bone damage and should be worried about their bone health. One in every two women and one in every four men will break a bone during their lifetime due to a metabolic bone disease. Early detection, raising bone health awareness, and maintaining a balanced healthy diet may reduce the risk of skeletal fractures caused by metabolic bone diseases. This review compiles information on the most common metabolic bone diseases (osteoporosis, primary hyperparathyroidism, osteomalacia, and fluorosis disease) seen in the global population, including their symptoms, mechanisms, and causes, as well as discussing their prevention and the development of new drugs for treatment. A large amount of research literature suggests that balanced nutrition and balanced periodic supplementation of calcium, phosphate, and vitamin D can improve re-absorption and the regrowth of bones, and inhibit the formation of skeletal fractures, except in the case of hereditary bone diseases. Meanwhile, new and improved drug formulations, such as raloxifene, teriparatide, sclerostin, denosumab, and abaloparatide, have been successfully developed and administered as treatments for metabolic bone diseases, while others (romososumab and odanacatib) are in various stages of clinical trials.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Zang L, Kagotani K, Nakayama H, Bhagat J, Fujimoto Y, Hayashi A, Sono R, Katsuzaki H, Nishimura N, Shimada Y. 10-Gingerol Suppresses Osteoclastogenesis in RAW264.7 Cells and Zebrafish Osteoporotic Scales. Front Cell Dev Biol 2021; 9:588093. [PMID: 33748100 PMCID: PMC7978033 DOI: 10.3389/fcell.2021.588093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is the most common aging-associated bone disease and is caused by hyperactivation of osteoclastic activity. We previously reported that the hexane extract of ginger rhizome [ginger hexane extract (GHE)] could suppress receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in RAW264.7 cells. However, the anti-osteoclastic components in GHE have not yet been identified. In this study, we separated GHE into several fractions using silica gel column chromatography and evaluated their effects on osteoclastogenesis using a RAW264.7 cell osteoclast differentiation assay (in vitro) and the zebrafish scale model of osteoporosis (in vivo). We identified that the fractions containing 10-gingerol suppressed osteoclastogenesis in RAW264.7 cells detected by tartrate-resistant acid phosphatase (TRAP) staining. In zebrafish, GHE and 10-gingerol suppressed osteoclastogenesis in prednisolone-induced osteoporosis regenerated scales to promote normal regeneration. Gene expression analysis revealed that 10-gingerol suppressed osteoclast markers in RAW264.7 cells [osteoclast-associated immunoglobulin-like receptor, dendrocyte-expressed seven transmembrane protein, and matrix metallopeptidase-9 (Mmp9)] and zebrafish scales [osteoclast-specific cathepsin K (CTSK), mmp2, and mmp9]. Interestingly, nuclear factor of activated T-cells cytoplasmic 1, a master transcription regulator of osteoclast differentiation upstream of the osteoclastic activators, was downregulated in zebrafish scales but showed no alteration in RAW264.7 cells. In addition, 10-gingerol inhibited CTSK activity under cell-free conditions. This is the first study, to our knowledge, that has found that 10-gingerol in GHE could suppress osteoclastic activity in both in vitro and in vivo conditions.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Kazuhiro Kagotani
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Tsuji Health & Beauty Science Laboratory, Mie University, Tsu, Japan
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | | | | | - Ryoji Sono
- Tsuji Oil Mills Co., Ltd., Matsusaka, Japan
| | - Hirotaka Katsuzaki
- Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Japan
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu, Japan
- Department of Integrative Pharmacology, Graduate School of Medicine, Mie University, Tsu, Japan
- Department of Bioinformatics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
| |
Collapse
|
6
|
Tabish TA, Pranjol MZI, Whatmore JL, Zhang S. Status and Future Directions of Anti-metastatic Cancer Nanomedicines for the Inhibition of Cathepsin L. FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|