1
|
Bezvikonnyi O, Bernard RS, Andruleviciene V, Volyniuk D, Keruckiene R, Vaiciulaityte K, Labanauskas L, Grazulevicius JV. Derivatives of Imidazole and Carbazole as Bifunctional Materials for Organic Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8495. [PMID: 36499990 PMCID: PMC9739035 DOI: 10.3390/ma15238495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
New derivatives of carbazole and diphenyl imidazole for potential multiple applications were synthesized and investigated. Their properties were studied by thermal, optical, photophysical, electrochemical, and photoelectrical measurements. The compounds exhibited relatively narrow blue light-emission bands, which is favorable for deep-blue electroluminescent devices. The synthesized derivatives of imidazole and carbazole were tested as fluorescent emitters for OLEDs. The device showed deep-blue emissions with CIE color coordinates of (0.16, 0.08) and maximum quantum efficiency of 1.1%. The compounds demonstrated high triplet energy values above 3.0 eV and hole drift mobility exceeding 10-4 cm2/V·s at high electric fields. One of the compounds having two diphenyl imidazole moieties and tert-butyl-substituted carbazolyl groups showed bipolar charge transport with electron drift mobility reaching 10-4 cm2/V·s at electric field of 8 × 105 V/cm. The synthesized compounds were investigated as hosts for green, red and sky-blue phosphorescent OLEDs. The green-, red- and sky-blue-emitting devices demonstrated maximum quantum efficiencies of 8.3%, 6.4% and 7.6%, respectively.
Collapse
Affiliation(s)
- Oleksandr Bezvikonnyi
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
- Department of Physics, Faculty of Mathematics and Natural Science, Kaunas University of Technology, Studentų g. 50, LT-51369 Kaunas, Lithuania
| | - Ronit Sebastine Bernard
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Viktorija Andruleviciene
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Rasa Keruckiene
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Kamile Vaiciulaityte
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Linas Labanauskas
- Center for Physical Sciences and Technology (FTMC), Department of Organic Chemistry, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| |
Collapse
|
2
|
Wen HY, Ho SY. A bipolar host material for the construction of triplet-energy level for white phosphorescent organic light emitting diodes. RSC Adv 2022; 12:28128-28136. [PMID: 36320236 PMCID: PMC9527567 DOI: 10.1039/d2ra05124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 11/07/2022] Open
Abstract
Efficient white lighting sources based on phosphorescent organic light emitting diodes (PhOLEDs) have been predicted as the next generation of highly efficient general illumination systems. This study proposed a novel host material, CzppT, featuring the characteristics of bipolarity while possessing electron-withdrawing pyridine and electron-donating carbazole groups in the hexaphenylbenzene core, suitable for use in both blue and white PhOLEDs. The CzppT possesses a high triplet energy level and thermally activated delayed fluorescence stable which is confirmed by the high value of T d (480 °C). The effect of the emission layer deposition method on the characteristics of the device was studied in the dicarbazole derivative fabricated in a hole and electron-only device to ensure the bipolarity of CzppT. A blue PhOLED device exhibited a maximum external quantum efficiency of 11.0% with CIE coordinates (x, y) of (0.18, 0.41). Moreover, a white PhOLED device doped with a dye has a maximum external quantum efficiency of 11.3%, and CIE coordinates (x, y) of (0.32, 0.36). These results demonstrate that the hexaphenylbenzene derivative was conveniently synthesized with bipolarity and hole- and electron-transporting ability and high triplet energy level. Moreover, as a host material, it is expected to be applied to bipolar, high EL efficiency OLEDs in the future.
Collapse
Affiliation(s)
- Hsin-Yi Wen
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and TechnologyKaohsiung 80778Taiwan
| | - Shou-Yi Ho
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and TechnologyKaohsiung 80778Taiwan
| |
Collapse
|