1
|
Fosu SA, Dergachev VD, Nakritskaia DD, Summers TJ, Varganov SA, Cantu DC. Predicting Magnetic Barriers in Lanthanide Complexes with Electrostatic Potential Charges. J Phys Chem A 2025; 129:198-206. [PMID: 39710976 DOI: 10.1021/acs.jpca.4c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Single-molecule magnets (SMMs) with slow relaxation of magnetization and blocking temperatures above that of liquid nitrogen are essential for practical applications in high-density data storage devices and quantum computers. A rapid and accurate prediction of the effective magnetic relaxation barrier (Ueff) is needed to accelerate the discovery of high-performance SMMs. Using density functional theory and multireference calculations, we explored correlations between Ueff, partial atomic charges, and the anisotropic barrier for a series of sandwich-type lanthanide complexes containing cyclooctatetraene, substituted cyclopentadiene, phospholyl, boratabenzene, or borane ligands. Our results show a correlation between the electrostatic potential charge of the lanthanide ion in the complex and Ueff. Systematic ligand modifications show that reducing ligand nucleophilicity and incorporating soft bases enhance magnetic anisotropy and Ueff values. This work identifies a correlation to predict Ueff values and optimization of ligand coordination environments in lanthanide-based SMMs.
Collapse
Affiliation(s)
- Samuel A Fosu
- Department of Chemical and Materials Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Vsevolod D Dergachev
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Daria D Nakritskaia
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| | - Sergey A Varganov
- Department of Chemistry, University of Nevada Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada Reno, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Nain S, Ali ME. Modulation of the Magnetic Anisotropy via the Ligand Field in Sandwiched Erbium Complexes. Inorg Chem 2024. [PMID: 39729210 DOI: 10.1021/acs.inorgchem.4c04537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Among lanthanide-based single-molecule magnets (SMMs), erbium(III) is a Kramers ion, apart from dysprosium(III), which provides magnetic bistability in the presence of a suitable coordination environment. However, Er-based SMMs exhibit significantly less magnetic anisotropy than Dy because their prolate electronic density necessitates equatorially correlated ligands to minimize the charge contact with the Er atom. Here, in this work, we have computationally investigated the heteroleptic organometallic complexes with an Er(III) atom sandwiched between two distinct cyclic rings (five- and eight-membered) with the aim of tuning the magnetic anisotropy via exploiting the ligand field. The ligand field is manipulated by substituting one of the C atoms from the five-membered ring with heteroatoms (groups 14 and 15), while the other (eight-membered) ring remains intact. The electronic and magnetic properties have been investigated using first-principles-based ab initio approaches. The distortion in the planarity of the five-membered ring generated by the larger heteroatom affects the bonding with magnetic Er and consequently the electronic structure. This is observed to modify the ligand field and the magnetic axis, thereby improving the magnetic relaxation barrier.
Collapse
Affiliation(s)
- Sakshi Nain
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab 140306, India
| |
Collapse
|
3
|
Wang Y, Luo QC, Zheng YZ. Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands. Angew Chem Int Ed Engl 2024; 63:e202407016. [PMID: 38953597 DOI: 10.1002/anie.202407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those "shining stars" of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.
Collapse
Affiliation(s)
- Yidian Wang
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
4
|
Delano F, Benner F, Jang S, Greer SM, Demir S. Construction of intermolecular σ-hole interactions in rare earth metallocene complexes using a 2,3,4,5-tetraiodopyrrolyl anion. Chem Sci 2024; 15:13389-13404. [PMID: 39183902 PMCID: PMC11339973 DOI: 10.1039/d4sc03786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/29/2024] [Indexed: 08/27/2024] Open
Abstract
The generation of noncovalent intermolecular interactions represents a powerful method to control molecular vibrations and rotations. Combining these with the axial ligand field enforced by the metallocene ligand scaffold provides a dual-pronged approach in controlling the magnetic-relaxation pathways for dysprosium-based single-molecule magnets (SMMs). Here, we present the first implementation of 2,3,4,5-tetraiodopyrrole (TIPH) in its anionic form [TIP]- as a ligand in three isostructural rare-earth metal complexes Cp*2RE(TIP) (1-RE, RE = Y, Gd, and Dy; Cp* = pentamethylcylopentadienyl), where the TIP ligand binds through the nitrogen and one iodine atom κ2(N,I) to the metal centre. The shallow potential energy surface of the intermolecular σ-hole interaction yields distortions of the interatomic distances at elevated temperatures which were investigated by variable-temperature SCXRD. 1-RE constitute the first crystallographically characterized molecules containing TIP as a ligand for any metal ion, and 1-Dy is the first SMM that employs the TIP ligand. The structural dependence on temperature allowed the mechanism of magnetic relaxation to be explored through ab initio calculations at different temperatures. The electronic influence of the coordinated iodine substituent was probed via magnetometry and cw-EPR spectroscopy on 1-Gd. To further scrutinize the impact of the iodine substituents on the physical properties, a second set of new complexes Cp*2RE(DMP) (2-RE, RE = Y, and Dy) where DMP = 2,5-dimethylpyrrolyl were synthesized. Here, the DMP ligand binds similarly to the TIP ligand and represents an all-hydrocarbon analogue to 1-RE. 2-Dy constitutes the first SMM bearing a DMP ligand.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Florian Benner
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Seoyun Jang
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL) Los Alamos New Mexico 87545 USA
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
5
|
Orlova A, Bernbeck MG, Rinehart JD. Designing Quantum Spaces of Higher Dimensionality from a Tetranuclear Erbium-Based Single-Molecule Magnet. J Am Chem Soc 2024; 146:23417-23425. [PMID: 39106366 PMCID: PMC11345759 DOI: 10.1021/jacs.4c06600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
The spin relaxation of an Er3+ tetranuclear single-molecule magnet, [Er(hdcCOT)I]4, (hdcCOT = hexahydrodicyclopentacyclooctatetraenide dianion), is modeled as a near-tetrahedral arrangement of Ising-type spins. Combining evidence from single-crystal X-ray diffraction, magnetometry, and computational techniques, the slow spin relaxation is interpreted as a consequence of symmetry restrictions imposed on quantum tunneling within the cluster core. The union of spin and spatial symmetries describe a ground state spin-spin coupled manifold wherein 16 eigenvectors generate the 3D quantum spin-space described by the vertices of a rhombic dodecahedron. Analysis of the experimental findings in this context reveals a correlation between the magnetic transitions and edges connecting cubic and octahedral subsets of the eigenspace convex hull. Additionally, the model is shown to map to a theoretically proposed quantum Cayley network, indicating an underexplored synergy between mathematical descriptions of molecular spin interactions and quantum computing configuration spaces.
Collapse
Affiliation(s)
- Angelica
P. Orlova
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jeffrey D. Rinehart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
6
|
Ahmed N, Sahu PP, Chakraborty A, Flores Gonzalez J, Ali J, Kalita P, Pointillart F, Singh SK, Chandrasekhar V. In situ hydrolysis of a carbophosphazene ligand leads to one-dimensional lanthanide coordination polymers. Synthesis, structure and dynamic magnetic studies. Dalton Trans 2024; 53:11563-11577. [PMID: 38921544 DOI: 10.1039/d4dt00582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An in situ hydrolysis of the P-Cl bonds of the carbophosphazene [{NC(NMe2)}2{NPCl2}] (LPCl2) in the presence of hydrated lanthanide(III) nitrates in a dichloromethane and methanol (2 : 1) solvent mixture afforded a series of novel 1D coordination polymers: [{Ln(LHPO2)3(NO3)2(CH3OH)(H2O)} (Cl)]n {where Ln(III) = Gd (1), Tb (2), Dy (3), or Er (4) and LHPO2 is the hydrolyzed carbophosphazene (LPCl2) ligand}. X-ray crystallographic analysis revealed that complexes 1-4 are isostructural and crystallized in the monoclinic crystal system having P21/c space group. The coordination polymers are formed because of the involvement of the geminal P(O)(OH) moieties of the carbophosphazene ligand. Each lanthanide(III) ion is 9-coordinate (9O) in a distorted muffin geometry. Magnetic measurements revealed that both DyIII and ErIII analogues exhibit field-induced single-molecule magnet (SMM) behavior at 0.8 kOe and 2.2 k Oe, respectively. At such dc fields, the dynamic magnetic susceptibility displays complex behavior with a triple magnetic relaxation contribution for 3, while two contributions were identified for 4. The observed static and dynamic magnetic behavior for complexes 1-4 were further rationalized with the aid of BS-DFT and CASSCF/SO-RASSI/SINGLE_ANISO calculations.
Collapse
Affiliation(s)
- Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana-502285, India
| | - Amit Chakraborty
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Pankaj Kalita
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Telangana-502285, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|
7
|
Castellanos E, Benner F, Demir S. Linear, Electron-Rich Erbium Single-Molecule Magnet with Dibenzocyclooctatetraene Ligands. Inorg Chem 2024; 63:9888-9898. [PMID: 38738864 PMCID: PMC11134505 DOI: 10.1021/acs.inorgchem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Judicious design of ligand scaffolds to highly anisotropic lanthanide ions led to substantial advances in molecular spintronics and single-molecule magnetism. Erbium-based single-molecule magnets (SMMs) are rare, which is attributed to the prolate-shaped ErIII ion requiring an equatorial ligand field for enhancing its single-ion magnetic anisotropy. Here, we present an electron-rich mononuclear Er SMM, [K(crypt-222)][Er(dbCOT)2], 1 (where dbCOT = dibenzocyclooctatetraene), that was obtained from a salt metathesis reaction of ErCl3 and K2dbCOT. The dipotassium salt, K2dbCOT, was generated through a two-electron reduction of the bare dbCOT0 ligand employing potassium graphite and was crystallized from DME to give the new solvated complex, [K(DME)]2[dbCOT]n, 2. 1 was analyzed through crystallography, electrochemistry, spectroscopy, magnetometry, and CASSCF calculations. The structure of 1 consists of an anionic metallocene complex featuring a linear (180.0°) geometry with an ErIII ion sandwiched between dianionic dbCOT ligands and an outer-sphere K+ ion encapsulated in 2.2.2-cryptand. Two pronounced redox events at negative potentials allude to the formation of a trianionic erbocene complex, [Er(dbCOT)2]3-, on the electrochemical time scale. 1 shows slow magnetic relaxation with an effective spin-reversal barrier of Ueff = 114(2) cm-1, which is close in magnitude to the calculated energies of the first and second excited states of 96.9 and 109.13 cm-1, respectively. 1 exhibits waist-constricted hysteresis loops below 4 K and constitutes the first example of an erbocene-SMM bearing fused aromatic rings to the central COT ligand. Notably, 1 comprises the largest COT scaffold implemented in erbocene SMMs, yielding the most electron-rich homoleptic erbium metallocene SMM.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Chen QW, Ding YS, Zhu XF, Wang BW, Zheng Z. Substituent Positioning Effects on the Magnetic Properties of Sandwich-Type Erbium(III) Complexes with Bis(trimethylsilyl)-Substituted Cyclooctatetraenyl Ligands. Inorg Chem 2024; 63:9511-9519. [PMID: 38135507 DOI: 10.1021/acs.inorgchem.3c03369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Lanthanide complexes with judiciously designed ligands have been extensively studied for their potential applications as single-molecule magnets. With the influence of ligands on their magnetic properties generally established, recent research has unearthed certain effects inherent to site differentiation due to the different types and varying numbers of substituents on the same ligand platform. Using two new sandwich-type Er(III) complexes with cyclooctatetraenyl (COT) ligands featuring two differently positioned trimethylsilyl (TMS) substituents, namely, [Li(DME)Er(COT1,5-TMS2)2]n (Er1) and [Na(DME)3][Er(COT1,3-TMS2)2] (Er2) [COT1,3-TMS2 and COT1,5-TMS2 donate 1,3- and 1,5-bis(trimethylsilyl)-substituted cyclooctatetraenyl ligands, respectively; DME = 1,2-dimethoxyethane], and with reference to previously reported [Li(DME)3][Er(COT1,4-TMS2)2] (A) and [K(DME)2][Er(COT1,4-TMS2)2] (B), any possible substituent position effects have been explored for the first time. The rearrangement of the TMS substituents from the starting COT1,4-TMS2 to COT1,3-TMS2 and COT1,5-TMS2, by way of formal migration of the TMS group, was thermally induced in the case of Er1, while for the formation of Er2, the use of Na+ in the placement of its Li+ and K+ congeners is essential. Both Er1 and Er2 display single-molecule magnetic behaviors with energy barriers of 170(3) and 172(6) K, respectively. Magnetic hysteresis loops, butterfly-shaped for Er1 and wide open for Er2, were observed up to 12 K for Er1 and 13 K for Er2. Studies of magnetic dynamics reveal the different pathways for relaxation of magnetization below 10 K, mainly by the Raman process for Er1 and by quantum tunneling of magnetization for Er2, leading to the order of magnitude difference in magnetic relaxation times and sharply different magnetic hysteresis loops.
Collapse
Affiliation(s)
- Qi-Wei Chen
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - You-Song Ding
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiao-Fei Zhu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiping Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key University Laboratory of Rare Earth Chemistry of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Schwarz N, Krätschmer F, Suryadevara N, Schlittenhardt S, Ruben M, Roesky PW. Synthesis, Structural Characterization, and Magnetic Properties of Lanthanide Arsolyl Sandwich Complexes. Inorg Chem 2024; 63:9520-9526. [PMID: 38241036 DOI: 10.1021/acs.inorgchem.3c03374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
A series of trivalent lanthanide sandwich complexes [(η5-C4R4As)Ln(η8-C8H8)] using three different arsolyl ligands are reported. The complexes were obtained via salt elimination reactions between potassium arsolyl salts and lanthanide precursors [LnI(COT)(THF)2] (Ln = Sm, Dy, Er; COT = η8-C8H8). The resulting compounds exhibit classical sandwich complex structures with one notable exception. Characterization was conducted in both the solid state using single-crystal X-ray diffraction and in solution for the Sm compounds using NMR spectroscopy. Furthermore, the magnetic properties of an Er complex were investigated, revealing distinctive single-molecule-magnet behavior characterized by an energy barrier of Ueff = 323.3 K. Theoretical calculations were employed to support and interpret the experimental findings, with a comparative analysis performed against previously reported complexes.
Collapse
Affiliation(s)
- Noah Schwarz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Nithin Suryadevara
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Centre Européen de Science Quantique, Institut de Science et d'Ingénierie Supramoléculaires, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083 Strasbourg Cedex, France
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstrasse 15, 76131 Karlsruhe, Germany
| |
Collapse
|
10
|
Ouellette ET, Brackbill IJ, Kynman AE, Christodoulou S, Maron L, Bergman RG, Arnold J. Triple Inverse Sandwich versus End-On Diazenido: Bonding Motifs across a Series of Rhenium-Lanthanide and -Actinide Complexes. Inorg Chem 2024; 63:7177-7188. [PMID: 38598523 DOI: 10.1021/acs.inorgchem.3c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
While synthesizing a series of rhenium-lanthanide triple inverse sandwich complexes, we unexpectedly uncovered evidence for rare examples of end-on lanthanide dinitrogen coordination for certain heavy lanthanide elements as well as for uranium. We begin our report with the synthesis and characterization of a series of trirhenium triple inverse sandwich complexes with the early lanthanides, Ln[(μ-η5:η5-Cp)Re(BDI)]3(THF) (1-Ln, Ln = La, Ce, Pr, Nd, Sm; Cp = cyclopentadienide, BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate). However, as we moved across the lanthanide series, we ran into an unexpected result for gadolinium in which we structurally characterized two products for gadolinium, namely, 1-Gd (analogous to 1-Ln) and a diazenido dirhenium double inverse sandwich complex Gd[(μ-η1:η1-N2)Re(η5-Cp)(BDI)][(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (2-Gd). Evidence for analogues of 2-Gd was spectroscopically observed for other heavy lanthanides (2-Ln, Ln = Tb, Dy, Er), and, in the case of 2-Er, structurally authenticated. These complexes represent the first observed examples of heterobimetallic end-on lanthanide dinitrogen coordination. Density functional theory (DFT) calculations were utilized to probe relevant bonding interactions and reveal energetic differences between both the experimental and putative 1-Ln and 2-Ln complexes. We also present additional examples of novel end-on heterobimetallic lanthanide and actinide diazenido moieties in the erbium-rhenium complex (η8-COT)Er[(μ-η1:η1-N2)Re(η5-Cp)(BDI)](THF)(Et2O) (3-Er) and uranium-rhenium complex [Na(2.2.2-cryptand)][(η5-C5H4SiMe3)3U(μ-η1:η1-N2)Re(η5-Cp)(BDI)] (4-U). Finally, we expand the scope of rhenium inverse sandwich coordination by synthesizing divalent double inverse sandwich complex Yb[(μ-η5:η5-Cp)Re(BDI)]2(THF)2 (5-Yb), as well as base-free, homoleptic rhenium-rare earth triple inverse sandwich complex Y[(μ-η5:η5-Cp)Re(BDI)]3 (6-Y).
Collapse
Affiliation(s)
- Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - I Joseph Brackbill
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Amy E Kynman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stella Christodoulou
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Uhlmann C, Münzfeld L, Hauser A, Ruan TT, Kumar Kuppusamy S, Jin C, Ruben M, Fink K, Moreno-Pineda E, Roesky PW. Unique Double and Triple Decker Arrangements of Rare-Earth 9,10-Diborataanthracene Complexes Featuring Single-Molecule Magnet Characteristics. Angew Chem Int Ed Engl 2024; 63:e202401372. [PMID: 38390783 DOI: 10.1002/anie.202401372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Herein, we present the first report on the synthesis of rare-earth complexes featuring a 9,10-diborataanthracene ligand. This 14-π-electron ligand is highly reductive and was previously used in small-molecule activation. Salt elimination reactions between dipotassium 9,10-diethyl-9,10-diborataanthracene [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] (CotTIPS=1,4-(iPr3Si)2C8H6) in a 1 : 1 ratio yielded heteroleptic sandwich complexes [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Y, Dy, Er). These compounds form Lewis-base-free one-dimensional coordination polymers when crystallised from toluene. In contrast, reaction of [K2(DEDBA)] and [LnIII(η8-CotTIPS)(BH4)(thf)x] in a 1 : 2 ratio led to the formation of heteroleptic triple-decker complexes [(η8-CotTIPS)LnIII(μ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Y, Dy, Er). Notably, these are not only the first lanthanide triple-decker compounds featuring a six-membered ring as a deck but also the first trivalent lanthanide triple-decker featuring a heterocycle in the coordination sphere. Magnetic investigations reveal that [K(η8-CotTIPS)LnIII(η6-DEDBA)] (Ln=Dy, Er) and [(η8-CotTIPS)ErIII(μ-η6:η6-DEDBA)ErIII(η8-CotTIPS)] exhibit Single-Molecule Magnet (SMM) behaviour. In the case of [(η8-CotTIPS)LnIII(μ-η6:η6-DEDBA)LnIII(η8-CotTIPS)] (Ln=Dy, Er), the introduction of a second near lanthanide ion results in strong antiferromagnetic interactions, allowing the enhancement of the magnetic characteristic of the system, compared to the quasi isolated counterpart. This research renews the overlooked coordination chemistry of the DBA ligand and expands it to encompass rare-earth elements.
Collapse
Affiliation(s)
- Cedric Uhlmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe
| | - Ting-Ting Ruan
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Chengyu Jin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg, 8 allée Gaspard Monge BP, 70028 67083, Strasbourg Cedex, France
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Eufemio Moreno-Pineda
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, Panamá, 0824, Panamá
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, Panamá, 0824, Panamá
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe
| |
Collapse
|
12
|
Selikhov AN, Félix G, Lyubov DM, Nelyubina YV, Cherkasov AV, Sene S, Taydakov IV, Metlin MT, Tyutyunov AA, Guari Y, Larionova J, Trifonov AA. Luminescent Er 3+ based single molecule magnets with fluorinated alkoxide or aryloxide ligands. Dalton Trans 2024; 53:6352-6366. [PMID: 38488577 DOI: 10.1039/d3dt04375d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report the synthesis, structures, and magnetic and luminescence properties of a series of new mono- and dinuclear Er3+ complexes derived from sterically demanding aryloxide and fluorinated alkoxide ligands: [4-tBu-2,6-(Ph2CH)2C6H2O]3Er(THF) (1), [(C6F5)3CO]3Er(Me3SiOH) (2), [(C6F5)3CO]3Er[(Me3Si)2NH] (3), [(C6F5)3CO]3Er(C6H5CH3) (4), [(C6F5)3CO]3Er(o-Me2NC6H4CH3) (5) and {[Ph(CF3)2CO]2Er(μ2-OC(CF3)2Ph)}2 (6). In compounds 1, 2, and 4, the Er3+ ion is four-coordinated and adopts a distorted trigonal pyramidal geometry, while in 3, 5, and 6, the coordination geometry of Er3+ is impacted by the presence of several relatively short Er⋯F distances, making them rather 6-coordinated. All compounds behave as field-induced Single Molecule Magnets (SMMs) and exhibit an Er3+ characteristic near infrared (NIR) emission associated with the 4I13/2 → 4I15/2 transition with a remarkably long lifetime going up to 73 μs, which makes them multifunctional luminescent SMMs. The deconvolution of the NIR emission spectra allowed us to provide a direct probe of the crystal field splitting in these compounds, which was correlated with magnetic data.
Collapse
Affiliation(s)
- Alexander N Selikhov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Dmitry M Lyubov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Ilya V Taydakov
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991, Moscow, Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia
| | - Mikhail T Metlin
- P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospect 53, 119991, Moscow, Russia
| | - Andrey A Tyutyunov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Alexander A Trifonov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia.
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia
| |
Collapse
|
13
|
De S, Mondal A, Giblin SR, Layfield RA. Bimetallic Synergy Enables Silole Insertion into THF and the Synthesis of Erbium Single-Molecule Magnets. Angew Chem Int Ed Engl 2024; 63:e202317678. [PMID: 38300223 DOI: 10.1002/anie.202317678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The potassium silole K2 [SiC4 -2,5-(SiMe3 )2 -3,4-Ph2 ] reacts with [M(η8 -COT)(THF)4 ][BPh4 ] (M=Er, Y; COT=cyclo-octatetraenyl) in THF to give products that feature unprecedented insertion of the nucleophilic silicon centre into a carbon-oxygen bond of THF. The structure of the major product, [(μ-η8 : η8 -COT)M(μ-L1 )K]∞ (1M ), consists of polymeric chains of sandwich complexes, where the spiro-bicyclic silapyran ligand [C4 H8 OSiC4 (SiMe3 )2 Ph2 ]2- (L1 ) coordinates to potassium via the oxygen. The minor product [(μ-η8 : η8 -COT)M(μ-L1 )K(THF)]2 (2M ) features coordination of the silapyran to the rare-earth metal. In forming 1M and 2M , silole insertion into THF only occurs in the presence of potassium and the rare-earth metal, highlighting the importance of bimetallic synergy. The lower nucleophilicity of germanium(II) leads to contrasting reactivity of the potassium germole K2 [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ] towards [M(η8 -COT)(THF)4 ][BPh4 ], with intact transfer of the germole occurring to give the coordination polymers [{η5 -GeC4 (SiMe3 )2 Me2 }M(η8 -COT)K]∞ (3M ). Despite the differences in reactivity induced by the group 14 heteroatom, the single-molecule magnet properties of 1Er , 2Er and 3Er are similar, with thermally activated relaxation occurring via the first-excited Kramers doublet, subject to effective energy barriers of 122, 80 and 91 cm-1 , respectively. Compound 1Er is also analysed by high-frequency dynamic magnetic susceptibility measurements up to 106 Hz.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| | - Sean R Giblin
- School of Physics and Astronomy, Cardiff University, CF24 3AA, Cardiff, UK
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, BN1 9RH, Brighton, U.K
| |
Collapse
|
14
|
Liu D, Guo X, Zhang X, Al-Kahtani AA, Chibotaru LF. Building Molecular Nanomagnets by Encapsulating Lanthanide Ions in Boron Nitride Nanotubes: Ab Initio Investigation. Inorg Chem 2024; 63:3769-3780. [PMID: 38346334 DOI: 10.1021/acs.inorgchem.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Lanthanide-based single-ion magnets have attracted much interest due to their great potential for information storage at the level of one molecule. Among various strategies to enhance magnetization blocking in such complexes, the synthesis of axially symmetric compounds is regarded as the most promising. Here, we investigate theoretically the magnetization blocking of several lanthanide ions (Tb3+, Dy3+, Ho3+, Er3+, and Tm3+) encapsulated in highly symmetric zigzag boron nitride nanotubes (BNNTs) of different diameters with ab initio methodology. We found that Tb3+@(7,0)BNNT, Dy3+@(7,0)BNNT, and Tm3+@(5,0)BNNT are suitable SIM candidates, while the other investigated complexes from this series show no signs of magnetization blocking owing to a hard competition between contributions to the crystal field of the lanthanide ion from neighboring and more distant atoms of the nanotube.
Collapse
Affiliation(s)
- Dan Liu
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Xiaoyong Zhang
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
| | - Abdullah A Al-Kahtani
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
15
|
Hauser A, Münzfeld L, Uhlmann C, Lebedkin S, Schlittenhardt S, Ruan TT, Kappes MM, Ruben M, Roesky PW. It's not just the size that matters: crystal engineering of lanthanide-based coordination polymers. Chem Sci 2024; 15:1338-1347. [PMID: 38274072 PMCID: PMC10806785 DOI: 10.1039/d3sc03746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Synthesis and characterization of Lewis base free coordination polymers of selected lanthanides are presented. For this purpose, the substituted CotTIPS ligand (CotTIPS = 1,4-bis-triisopropylsilyl-cyclo-octatetraendiide) was used to synthesize homoleptic, anionic multidecker compounds of the type [K{LnIII(ɳ8-CotTIPS)2}]n. Depending on the solvent used for crystallization and the ionic radii of the lanthanide cations, three different categories of one-dimensional heterobimetallic coordination polymers were obtained in the solid state. For the early lanthanides La and Ce a unique helical conformation was obtained by crystallization from toluene, while the ionic radius of Pr seems to be a turning point towards the crystallization of zigzag polymers. For Er a third structural motif, a trapezoidal wave polymer was observed. Additionally, the zigzag polymer for all compounds could be obtained by changing the solvent from toluene to Et2O, reavealing a correlation between solid-state structure and ionic radii as well as solvent. While photoluminescence (PL) properties of Cot-lanthanide compounds are scarce, the La complexes show ligand centered green luminescence, whereas the Ce complexes reveal deep red emission origin from d-f transitions. The Er-compounds are single-molecule magnets, in which the magnetic relaxation of each Er ion occurs isolated from its neighbors at temperatures above 10 K, while below 9 K a strong antiferromagnetic coupling between the Er ions was seen.
Collapse
Affiliation(s)
- Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Cedric Uhlmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ting-Ting Ruan
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 D-76131 Karlsruhe Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex France
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| |
Collapse
|
16
|
Gou X, Wu Y, Wang M, Liu N, Lan W, Zhang YQ, Shi W, Cheng P. The influence of light on the field-induced magnetization dynamics of two Er(III) coordination polymers with different halogen substituents. Dalton Trans 2023; 53:148-152. [PMID: 38018387 DOI: 10.1039/d3dt02714g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photocontrolled magnetic properties are fundamental for the applications of molecular magnets, which have the features of high time and space resolution; however, such magnetic properties are highly challenging to be achieved owing to the weak light-matter interactions. Herein, the influence of in situ light irradiation on the field-induced magnetization dynamics of two Er(III) coordination polymers 1 and 2 with the same coordination skeletons but different halogen substituents was studied. 1 and 2, and their in situ photoexcited products 1a and 2a, display field-induced magnetization dynamics based on Orbach and/or Raman processes. The magnetization dynamics are fine-modulated by the synergetic effect of light irradiation and a ligand substituent, due to the charge re-distribution of the excited states of the ligand.
Collapse
Affiliation(s)
- Xiaoshuang Gou
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuewei Wu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengmeng Wang
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ning Liu
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenlong Lan
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wei Shi
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Department of Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
17
|
Feng L, Yang Y, Wang YX, Zhao Y, Liu ZY, Cong J, Zhang YQ, Cheng P. Reversible single-crystal to single-crystal transformation between triangular single-molecule toroics. Dalton Trans 2023; 52:16596-16600. [PMID: 37955190 DOI: 10.1039/d3dt03191h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
We report a method for synthesizing single-molecule magnets through a single-crystal to single-crystal transformation. This process yields two single-molecule magnets with similar triangular Dy3 cores but distinct solvents and space groups achieved via solvent exchange. Magnetic properties reveal that both Dy3 molecules exhibit similar toroidal moments but manifest diverse multiple magnetization dynamic behaviors owing to the spin-lattice coupling influence from different solvent molecules.
Collapse
Affiliation(s)
- Lixi Feng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yue Yang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yu-Xia Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Yizhen Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhong-Yi Liu
- College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Junzhuang Cong
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center and Frontiers Science Center for New Organic Matter, and Haihe Laboratory of Sustainable Chemical transformations (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Delano F, Benner F, Jang S, Demir S. Pyrrolyl-Bridged Metallocene Complexes: From Synthesis, Electronic Structure, to Single-Molecule Magnetism. Inorg Chem 2023; 62:14604-14614. [PMID: 37638984 DOI: 10.1021/acs.inorgchem.3c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The π- and σ-basicity of the pyrrolyl ligand affords several coordination modes. A sterically encumbering coordination sphere around metal centers may foster new coordination modes for the pyrrolyl ligand. Here, we present three dinuclear rare earth complexes [Cp*2RE(μ-pyr)]2, [RE = Y (1), La (2), Dy (3); Cp* = pentamethylcyclopentadienyl, pyr = pyrrolyl], which were synthesized through a protonolysis reaction between allyl complexes and H-pyrrole. Each metal is ligated by two Cp* ligands and the N atom of the pyrrolyl ring while interacting with the π-system of the other pyrrolyl ligand, yielding an unprecedented coordination mode for pyrrolyl best described as [((η5-Cp*)2RE)2(μ-1η2-pyr-2κN)(μ-2η2-pyr-1κN)]. The steric congestion implemented by the Cp* ligands forces this asymmetric coordination of the pyrrolyl ligand. 1-3 were characterized by crystallography, electrochemistry, and spectroscopy. Density functional theory calculations on 1 uncovered the bonding situation between the pyrrolyl ligand and the yttrium(III) ion. Excitingly, 3 displays slow magnetic relaxation under zero dc field with Ueff = 98.9(7) cm-1 and τo = 6.7(1) × 10-8 s, placing it among coveted dinuclear metallocene single-molecule magnets. CASSCF calculations provided the energy of the crystal field states of DyIII and confirmed the barrier height.
Collapse
Affiliation(s)
- Francis Delano
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Seoyun Jang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
De S, Mondal A, Ruan Z, Tong M, Layfield RA. Dynamic Magnetic Properties of Germole-ligated Lanthanide Sandwich Complexes. Chemistry 2023; 29:e202300567. [PMID: 37017588 PMCID: PMC10947301 DOI: 10.1002/chem.202300567] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
The first germole-ligated single-molecule magnets are reported, with contrasting properties found for the near-linear sandwich complexes [(η8 -COT)Ln(η5 -CpGe ]- , where Ln=Dy (1Dy ) or Er (1Er ), COT is cyclo-octatetraenyl and CpGe is [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ]2- . Whereas 1Er has an energy barrier of 120(1) cm-1 in zero applied field and open hysteresis loops up to 10 K, the relaxation in 1Dy is characterized by quantum tunneling within the ground state.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Arpan Mondal
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Richard A. Layfield
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| |
Collapse
|
20
|
Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Castellanos E, Demir S. Linear, Electron-Rich, Homoleptic Rare Earth Metallocene and Its Redox Activity. Inorg Chem 2023; 62:2095-2104. [PMID: 36689470 DOI: 10.1021/acs.inorgchem.2c03735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first homoleptic sandwich complex of dibenzocyclooctatetraene (dbCOT), representing a large cyclooctatetraene (COT) ligand with two fused benzene moieties, for any metal was accessed through salt metathesis of YCl3 with K2dbCOT in the presence of 2.2.2-cryptand. Single-crystal X-ray diffraction analysis on red-brown [K(crypt-222)][Y(dbCOT)2], 1, revealed a remarkably linear anionic yttrocene complex featuring a centroid-yttrium-centroid angle of 180.0°. The anionic moiety adopts a pseudo D2d geometry, where the carbon atoms of the central COT ring exhibit a staggered geometry. In total, 36 π-electrons are stored on both dbCOT anions, rendering it the largest isolated sandwich complex containing only fused aromatic rings. The solution-state structure of 1 was probed through a series of techniques involving cyclic voltammetry, UV-vis, and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, including 89Y NMR. The density functional theory (DFT) and natural bond orbital (NBO) analysis uncovered an ionic bonding interaction between the (dbCOT)2- ligands and YIII ion. NICS calculations support the experimentally observed aromatic character of 1, despite the deviation from planarity found in the dbCOT moieties. The cyclic voltammograms allude to the accessibility of a radical oxidation state, dbCOT3-•, based on a quasi-reversible feature. Excitingly, the chemical one-electron reduction of 1 through exposure to potassium graphite yielded a paramagnetic molecule, which was detected by electron paramagnetic resonance (EPR) techniques. Notably, this EPR spectrum is the first one for any sandwich complex containing a COT radical. Remarkably, 1 is thermally stable, and its isolation may provide access to mono- and multinuclear complexes comprising heavier metals with applications in small-molecule activation, single-molecule magnetism, and molecular nanowires.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
22
|
Münzfeld L, Dahlen M, Hauser A, Mahieu N, Kuppusamy SK, Moutet J, Tricoire M, Köppe R, La Droitte L, Cador O, Le Guennic B, Nocton G, Moreno-Pineda E, Ruben M, Roesky PW. Molecular Lanthanide Switches for Magnetism and Photoluminescence. Angew Chem Int Ed Engl 2023; 62:e202218107. [PMID: 36651327 DOI: 10.1002/anie.202218107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/19/2023]
Abstract
Solvation of [(CNT)Ln(η8 -COT)] (Ln=La, Ce, Nd, Tb, Er; CNT=cyclononatetraenyl, i.e., C9 H9 - ; COT=cyclooctatetraendiid, i.e., C8 H8 2- ) complexes with tetrahydrofuran (THF) gives rise to neutral [(η4 -CNT)Ln(thf)2 (η8 -COT)] (Ln=La, Ce) and ionic [Ln(thf)x (η8 -COT)][CNT] (x=4 (Ce, Nd, Tb), 3 (Er)) species in a solid-to-solid transformation. Due to the severe distortion of the ligand sphere upon solvation, these species act as switchable luminophores and single-molecule magnets. The desolvation of the coordinated solvents can be triggered by applying a dynamic vacuum, as well as a temperature gradient stimulus. Raman spectroscopic investigations revealed fast and fully reversible solvation and desolvation processes. Moreover, we also show that a Nd:YAG laser can induce the necessary temperature gradient for a self-sufficient switching process of the Ce(III) analogue in a spatially resolved manner.
Collapse
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Nolwenn Mahieu
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Senthil Kumar Kuppusamy
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jules Moutet
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Maxime Tricoire
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Ralf Köppe
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000, Rennes, France
| | - Grégory Nocton
- Laboratoire de Chimie Moléculaire (LCM), UMR 9168, CNRS, Ecole Polytechnique, Institut polytechnique Paris, Route de Saclay, 91120, Palaiseau, France
| | - Eufemio Moreno-Pineda
- Depto de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS, Université de Strasbourg, 8 allée Gaspard Monge, BP, 70028, 67083, Strasbourg Cedex, France
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| |
Collapse
|
23
|
Vanjak JC, Wilkins BO, Vieru V, Bhuvanesh NS, Reibenspies JH, Martin CD, Chibotaru LF, Nippe M. A High-Performance Single-Molecule Magnet Utilizing Dianionic Aminoborolide Ligands. J Am Chem Soc 2022; 144:17743-17747. [PMID: 36162057 DOI: 10.1021/jacs.2c06698] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of a homoleptic f-block borolide sandwich complex is presented and shown to be a high-performance single-molecule magnet (SMM). The bis(borolide) complex [K(2.2.2)][[1-(piperidino)-2,3,4,5-tetraphenylborolyl]2Dy] (1) features an unusual example of an anionic Ln3+ metallocene that supports short metal-ligand bonds and a high degree of linearity around the central Dy3+ ion, resulting in comparatively large barriers to magnetization reversal (Ueff = 1600 cm-1 for the most linear orientation) and, importantly, a high blocking temperature (TB, defined as T(τ100s)) of 66 K. These metrics put complex 1 among the very best performing SMMs reported to date and highlight the potential of dianionic borolide ligands to increase ligand field axiality, compared to monoanionic cyclic ligands, to ultimately maximize magnetic anisotropy in f-block-based SMMs.
Collapse
Affiliation(s)
- James C Vanjak
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Branford O Wilkins
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Veacheslav Vieru
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Paul-Henri Spaaklaan 1, 6229 EN Maastricht, The Netherlands
| | - Nattamai S Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Liviu F Chibotaru
- Theory of Nanomaterials Group, Katholieke Universiteit Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
24
|
An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals. Nat Commun 2022; 13:2014. [PMID: 35440596 PMCID: PMC9018761 DOI: 10.1038/s41467-022-29624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions-a promising route towards high-performance single-molecule magnets.
Collapse
|
25
|
Zhou Z, McNeely J, Greenough J, Wei Z, Han H, Rouzières M, Rogachev AY, Clérac R, Petrukhina MA. Lanthanide-mediated tuning of electronic and magnetic properties in heterotrimetallic cyclooctatetraenyl multidecker self-assemblies. Chem Sci 2022; 13:3864-3874. [PMID: 35432895 PMCID: PMC8966735 DOI: 10.1039/d2sc00631f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT)3(THF)3] (Ln(iii) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P21/c space group with a slight compression of the unit cell from 3396.4(2) Å3 to 3373.2(4) Å3 along the series. All complexes exhibit a triple-decker structure having the Ln(iii) and K(i) ions sandwiched by three COT2- ligands with an end-bound {Ca2+(THF)3} moiety to form a non-linear (153.5°) arrangement of three different metals. The COT2- ligands act in a η8-mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K(i) and Ca(ii) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln(iii) ions. The magnetic property investigation of the [LnKCa(COT)3(THF)3] series (Ln(iii) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT)3(THF)3] in contrast to [ErKCa(COT)3(THF)3], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - James McNeely
- Department of Chemistry, Boston University Boston MA USA
| | - Joshua Greenough
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University Ithaca New York 14853 USA
| | - Mathieu Rouzières
- Univ. of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 F-33600 Pessac France
| | - Andrey Yu Rogachev
- Department of Chemistry, Illinois Institute of Technology Chicago IL 60616 USA
| | - Rodolphe Clérac
- Univ. of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031 F-33600 Pessac France
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York Albany NY 12222 USA
| |
Collapse
|
26
|
Münzfeld L, Sun X, Schlittenhardt S, Schoo C, Hauser A, Gillhuber S, Weigend F, Ruben M, Roesky PW. Introduction of plumbole to f-element chemistry. Chem Sci 2022; 13:945-954. [PMID: 35211259 PMCID: PMC8790777 DOI: 10.1039/d1sc03805b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022] Open
Abstract
Herein, we present the synthesis and characterization of heteroleptic lanthanide complexes bearing a dianionic η5-plumbole ligand in their coordination sphere. The reaction proceeds via a salt elimination reaction between the dilithioplumbole ([Li(thf)]2[1,4-bis-tert-butyl-dimethylsilyl-2,3-bis-phenyl-plumbolyl] = [Li2(thf)2(η5-LPb)]) and specifically designed [Ln(η8-COTTIPS)BH4] precursors (Ln = lanthanide, La, Ce, Sm, Er; COTTIPS = 1,4-bis-triisopropylsilyl-cyclooctatetraenyl), that are capable of stabilizing a planar plumbole moiety in the coordination sphere of different trivalent lanthanide ions. In-depth ab initio calculations show that the aromaticity of the dianionic plumbole is retained upon coordination. Electron delocalization occurs from the plumbole HOMO to an orbital of mainly d-character at the lanthanide ion. The magnetic properties of the erbium congener were investigated in detail, leading to the observation of magnetic hysteresis up to 5 K (200 Oe s-1), an unequivocal proof for single molecule magnet behavior in this system. The magnetic behavior of the erbium species can be modulated by manipulating the position of the lithium cation in the complex, which directly influences the bonding metrics in the central [(η5-LPb)Er(η8-COTTIPS)]- fragment. This allowed us to assess a fundamental magneto-structural correlation in an otherwise identical inner coordination sphere.
Collapse
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christoph Schoo
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Sebastian Gillhuber
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 D-35032 Marburg Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex France
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| |
Collapse
|
27
|
Mondal A, Konar S. Effect of an axial coordination environment on quantum tunnelling of magnetization for dysprosium single-ion magnets with theoretical insight. Dalton Trans 2022; 51:1464-1473. [PMID: 34988577 DOI: 10.1039/d1dt03678e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report two mononuclear dysprosium complexes [Dy(H4L){B(OMe)2(Ph)2}2](Cl)·MeOH (1) and [Dy(H4L){MeOH)2(NCS)2}](Cl) (2) [where H4L = 2,2'-(pyridine-2,6-diylbis(ethan-1-yl-1-ylidene))bis(N-phenylhydrazinecarboxamide)] with different axial coordination environments. The structural analysis revealed that the pentadentate H4L ligand binds through the equatorial position in both complexes. In complex 1, the axial positions are occupied by bidentate dimethoxydiphenyleborate [B(OMe)2(Ph)2]-. On the other hand, in complex 2, one axial position is occupied by two NCS- and one MeOH molecule while another MeOH molecule is coordinated to the other axial position. Magnetic measurements disclose the presence of field-induced slow relaxation of magnetization with an energy barrier of Ueff = 30 K for 1 whereas no such effective barrier was observed in complex 2. Detailed analysis of field and temperature dependence of the relaxation time confirms the major role of Raman, QTM, and direct processes rather than the Orbach process in complex 1. It was observed that [B(OMe)2(Ph)2]- provides higher axial anisotropy which slows down the QTM process (relaxation time for the QTM process is 2.70 × 10-5 s) in 1 as compared to NCS anions and MeOH molecules in 2 (1.03 × 10-8 s), and is responsible for the absence of an effective energy barrier in the latter complex as confirmed by ab initio calculations. The calculations also show that the presence of a large bidentate dimethoxydiphenyleborate ligand in axial positions may result in high-performance Dy-based single-ion magnets.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal-462066, MP, India.
| |
Collapse
|
28
|
Korzyński MD, Bernhardt M, Romankov V, Dreiser J, Matmon G, Pointillart F, Le Guennic B, Cador O, Copéret C. Cyclooctatetraenide-based single-ion magnets featuring bulky cyclopentadienyl ligand. Chem Sci 2022; 13:10574-10580. [PMID: 36277624 PMCID: PMC9473503 DOI: 10.1039/d2sc02560d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
We report a family of organometallic rare-earth complexes with the general formula (COT)M(Cpttt) (where (COT)2− = cyclooctatetraenide, (Cpttt)− = 1,2,4-tri(tert-butyl)cyclopentadienide, M = Y(iii), Nd(iii), Dy(iii) and Er(iii)). Similarly to the prototypical Er(iii) analog featuring pentamethylcyclopentadienyl ligand (Cp*)−, (COT)Er(Cpttt) behaves as a single-ion magnet. However, the introduction of the sterically demanding (Cpttt)− imposes geometric constraints that lead to a simplified magnetic relaxation behavior compared to the (Cp*)− containing complexes. Consequently, (COT)Er(Cpttt) can be viewed as a model representative of this organometallic single-ion magnet architecture. In addition, we demonstrate that the increased steric profile associated with the (Cpttt)− ligand permits preparation, structural characterization and interrogation of magnetic properties of the early-lanthanide complex, (COT)Nd(Cpttt). Such a mononuclear derivative could not be obtained when a (Cp*)− ligand was employed, a testament to larger ionic radius of this early lanthanide ion. Application of steric control principles allows for simplification of the magnetic behavior of an iconic single-ion magnet architecture as well as the preparation of its previously inaccessible representative.![]()
Collapse
Affiliation(s)
- Maciej Damian Korzyński
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Moritz Bernhardt
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Vladyslav Romankov
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jan Dreiser
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Guy Matmon
- Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| |
Collapse
|
29
|
Long J, Lyubov DM, Kissel' AA, Gogolev IA, Tyutyunov AA, Nelyubina YV, Salles F, Guari Y, Cherkasov AV, Larionova J, Trifonov AA. Effect on the geometry over the slow relaxation of the magnetization in a series of erbium( iii) complexes based on halogenated ligands. CrystEngComm 2022. [DOI: 10.1039/d2ce00856d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Erbium(iii) complexes based on halogenated ligands.
Collapse
Affiliation(s)
- Jérôme Long
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Alexander A. Kissel'
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Ilia A. Gogolev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Andrey A. Tyutyunov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| | - Fabrice Salles
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Yannick Guari
- ICGM, CNRS, ENSCM, Univ. Montpellier, Montpellier, France
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
| | | | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 603950, Nizhny Novgorod, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str, 119334, Moscow, Russia
| |
Collapse
|
30
|
Zhu Z, Tang J. Metal–metal bond in lanthanide single-molecule magnets. Chem Soc Rev 2022; 51:9469-9481. [DOI: 10.1039/d2cs00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys recent critical advances in lanthanide SMMs, highlighting the influences of metal–metal bonds on the magnetization dynamics.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
31
|
Ding MM, Shang T, Hu R, Zhang YQ. Understanding the Magnetic Anisotropy for Linear Sandwich [Er(COT)]+-based Compounds: A Theoretical Investigation. Dalton Trans 2022; 51:3295-3303. [DOI: 10.1039/d1dt04157f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of linear sandwich single-ion magnets containing [Er(COT)]+ fragment were selected to probe the magneto-structural correlations using ab initio methods. For prolate shaped ErIII ion, an equatorially coordinating geometry...
Collapse
|
32
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Imidosulfonate scorpionate ligands in lanthanide single-molecule magnet design: slow magnetic relaxation and butterfly hysteresis in [ClDy{Ph 2PCH 2S(N tBu) 3} 2]. Dalton Trans 2021; 50:17194-17201. [PMID: 34783813 DOI: 10.1039/d1dt03555j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnets (SMMs) harbour vast opportunities for potential pioneering applications upon optimization like big data storage and quantum computing. Lanthanides were found to be highly suitable candidates in the design of such molecules, as they intrinsically hold a large unquenched orbital momentum and a strong spin-orbit coupling, warranting a high magnetic anisotropy. An indispensable element in successfully tailoring SMMs is the ligand design. Polyimido sulfur ligands offer a promising choice because the polar S+-N--bond facilitates both electronic and geometric adaptability to various f-metals. In particular, the acute N-Ln-N bite angle generates advantageous magnetic properties. The [Ph2PCH2S(NtBu)3]- anion, introduced from [(thf)3K{Ph2PCH2S(NtBu)3}] (2) to a series of complexes [ClLn{Ph2PCH2S(NtBu)3}2] with Ln = Tb (3a), Dy (3b), Er (3c), Ho (3d), and Lu (3e), provides tripodal shielding of the metal's hemisphere as well as a side-arm donation of a soft phosphorus atom. For the Tb and Er complexes 3a and 3d, slow magnetic relaxation (Ueff = 235 and 34.5 cm-1, respectively) was only observed under an applied dc field. The dysprosium congener 3b, however, is a true SMM with relaxation at zero field (Ueff = 66 cm-1) and showing a butterfly hysteresis close to 3.5 K. Upon magnetic dilution with the diamagnetic and isostructural lutetium complex 3e or application of a magnetic field, the energy barrier to spin reversal is increased to 74 cm-1.
Collapse
Affiliation(s)
- Jochen Jung
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Christina M Legendre
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Serhiy Demeshko
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Regine Herbst-Irmer
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| | - Dietmar Stalke
- Georg-August Universität Göttingen, Institut für Anorganische Chemie, Tammannstraße 4, 37077 Göttingen, Germany.
| |
Collapse
|
33
|
Sun G, Huang X, Shang T, Yan S, Bao S, Lu X, Zhang Y, Zheng L. Polar Lanthanide Anthracene Complexes Exhibiting Magnetic, Luminescent and Dielectric Properties. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Guo‐Bin Sun
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Xin‐Da Huang
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Tao Shang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Shuo Yan
- National Laboratory of Solid State Microstructures and Physics School Nanjing University Nanjing 210093 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Song‐Song Bao
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Xiao‐Mei Lu
- National Laboratory of Solid State Microstructures and Physics School Nanjing University Nanjing 210093 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS School of Physical Science and Technology Nanjing Normal University Nanjing 210023 China
| | - Li‐Min Zheng
- State Key Laboratory of Coordination Chemistry Coordination Chemistry Institute School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210093 China
| |
Collapse
|
34
|
Pavlischuk AV, Pavlischuk VV. Influence of Molecular and Electronic Structure of Ln3+ Complexes on the Occurrence of Monoionic Magnetism: a Review. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Zhu D, Wang M, Guo L, Shi W, Li J, Cui C. Synthesis, Structure, and Magnetic Properties of Rare-Earth Benzoborole Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dezhao Zhu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Mengmeng Wang
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Lulu Guo
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Jianfeng Li
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
36
|
Jin P, Yu K, Zhai Y, Luo Q, Wang Y, Zhang X, Lv Y, Zheng Y. Chelating Guanidinates for Dysprosium(
III
)
Single‐Molecule
Magnets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng‐Bo Jin
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Ke‐Xin Yu
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yuan‐Qi Zhai
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Qian‐Cheng Luo
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Yi‐Dian Wang
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| | - Xu‐Feng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University 277 West Yanta Road, Xi'an Shaanxi 710061 China
| | - Yan‐Zhen Zheng
- Xi'an Jiaotong University Shenzhen Research School, Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior for Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Physics and School of Chemistry, Xi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 China
| |
Collapse
|
37
|
Abstract
The f-block chemistry of phospholyl and arsolyl ligands, heavier p-block analogues of substituted cyclopentadienyls (CpR , C5 R5 ) where one or more CR groups are replaced by P or As atoms, is less developed than for lighter isoelectronic C5 R5 rings. Heterocyclopentadienyl complexes can exhibit properties that complement and contrast with CpR chemistry. Given that there has been renewed interest in phospholyl and arsolyl f-block chemistry in the last two decades, coinciding with a renaissance in f-block solution chemistry, a review of this field is timely. Here, the syntheses of all structurally characterised examples of lanthanide and actinide phospholyl and arsolyl complexes to date are covered, including benzannulated derivatives, and together with group 3 complexes for completeness. The physicochemical properties of these complexes are reviewed, with the intention of motivating further research in this field.
Collapse
Affiliation(s)
- David P Mills
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Peter Evans
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| |
Collapse
|
38
|
Zou Q, Liu JC, Huang XD, Bao SS, Zheng LM. Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
39
|
Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O'Donnell F, Wooles AJ, Chilton NF, Liddle ST. Correlating axial and equatorial ligand field effects to the single-molecule magnet performances of a family of dysprosium bis-methanediide complexes. Chem Sci 2021; 12:3911-3920. [PMID: 34163660 PMCID: PMC8179472 DOI: 10.1039/d1sc00238d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2-, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy-5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s-1). Fitting the alternating current magnetic susceptibility data for 2Dy-5Dy gives energy barriers to magnetic relaxation (U eff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy-4Dy join a privileged group of SMMs with U eff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy-4Dy, the Dy-components can be grouped into 2Dy-cation/4Dy and 2Dy-anion/3Dy, where the former have almost linear C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with short average Dy[double bond, length as m-dash]C distances, and the latter have more bent C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with longer average Dy[double bond, length as m-dash]C bonds. Both U eff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M-L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between U eff barrier and axial linearity in structurally comparable systems.
Collapse
Affiliation(s)
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Emanuele Zanda
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Felix O'Donnell
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
40
|
Mondal A, Konar S. Strong Equatorial Crystal Field Enhances the Axial Anisotropy and Energy Barrier for Spin Reversal Process in Yb 2 Single Molecule Magnets. Chemistry 2021; 27:3449-3456. [PMID: 33084133 DOI: 10.1002/chem.202004379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Indexed: 02/03/2023]
Abstract
The importance of equatorial crystal fields on magnetic anisotropy of ytterbium single molecule magnets (SMMs) is observed for the first time. Herein, we report three similar dinuclear ytterbium complexes with the formula [Yb2 (3-OMe-L)2 (DMF)2 (NO3 )2 ]⋅DMF (1), [Yb2 (3-H-L)2 (DMF)2 (NO3 )2 ]⋅DMF⋅H2 O (2), and [Yb2 (3-NO3 -L)2 (DMF)2 (NO3 )2 ] (3), [where 3-X-H2 L=N'-(2-hydroxy-3-X-benzylidene)picolinohydrazide, X=OMe (1), H (2) NO2 (3)]. Detailed magnetic measurements reveal the presence of weak antiferromagnetic interactions between the Yb centers and a field-induced slow relaxation of magnetization in all complexes. A higher energy barrier for spin reversal was observed for complex 1 (Ueff =50 K) and it decreases in the order of 2 (47 K) to 3 (40 K). Notably, complex 1 shows a remarkable energy barrier within the frequency range of 1-850 Hz reported for Yb-based SMMs. Further, ab initio calculations show a higher axial anisotropy and lower quantum tunneling of magnetization (QTM) in the ground state for 1 compared to 2 and 3. It was also observed that the presence of a strong crystal field in the equatorial plane (when the ∡ O1-Yb-O3 bond angle is close to 90°) enhances the axial anisotropy and improves the SMM behavior in the studied complexes. Both the experimental and theoretical analysis of relaxation dynamics discloses that Raman and QTM play major role on slow relaxation process for all complexes. To provide more insight into the exchange interactions, broken-symmetry DFT calculations were performed.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
41
|
A Local
D
4h
Symmetric Dysprosium(III) Single‐Molecule Magnet with an Energy Barrier Exceeding 2000 K**. Chemistry 2021; 27:2623-2627. [DOI: 10.1002/chem.202003931] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Indexed: 11/07/2022]
|
42
|
Brzozowska M, Handzlik G, Kurpiewska K, Zychowicz M, Pinkowicz D. Pseudo-tetrahedral vs. pseudo-octahedral Er III single molecule magnets and the disruptive role of coordinated TEMPO radical. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00262g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetrahedral ErIII complexes are potential candidates for high-performance single molecule magnets (SMMs).
Collapse
Affiliation(s)
| | | | | | | | - Dawid Pinkowicz
- Jagiellonian University
- Faculty of Chemistry
- 30-387 Kraków
- Poland
| |
Collapse
|
43
|
Goodwin CAP. Blocking like it's hot: a synthetic chemists' path to high-temperature lanthanide single molecule magnets. Dalton Trans 2020; 49:14320-14337. [PMID: 33030172 DOI: 10.1039/d0dt01904f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Progress in the synthesis, design, and characterisation of single-molecule magnets (SMMs) has expanded dramatically from curiosity driven beginnings to molecules that retain magnetization above the boiling point of liquid nitrogen. This is in no small part due to the increasingly collaborative nature of this research where synthetic targets are guided by theoretical design criteria. This article aims to summarize these efforts and progress from the perspective of a synthetic chemist with a focus on how chemistry can modulate physical properties. A simple overview is presented of lanthanide electronic structure in order to contextualize the synthetic advances that have led to drastic improvements in the performance of lanthanide-based SMMs from the early 2000s to the late 2010s.
Collapse
|
44
|
Mondal A, Kharwar AK, Sahu PK, Konar S. Alignment of Axial Anisotropy in a 1D Coordination Polymer shows Improved Field Induced Single Molecule Magnet Behavior over a Mononuclear Seven Coordinated Fe II Complex. Chem Asian J 2020; 15:2681-2688. [PMID: 32603028 DOI: 10.1002/asia.202000666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 06/26/2020] [Indexed: 11/11/2022]
Abstract
Herein, we report a CN-bridged alternating FeII -NiII 1D chain to ensure the alignment of axial anisotropy and improve the single molecule magnet (SMM) behavior in seven coordinated FeII compound. The chain was constructed from hepta coordinated Fe(II) complex as an anisotropic building unit and diamagnetic nickel tetra cyanate as a bridging ligand. The magnetic measurements show the easy-axis anisotropy of the seven coordinated Fe(II) complex and field induced SMM behavior with spin reversal energy barrier Ueff =61(2) K (42 cm-1 ) and pre-exponential relaxation time τ0 =1.9×10-8 s. The detailed analysis of the relaxation dynamics discloses that the Orbach process plays an important role in slow relaxation of magnetization for this compound. Notably, this example represents a remarkable energy barrier observed in hepta coordinated Fe(II) SMMs. The ab initio calculations estimate the magnitude of axial anisotropy and show the parallel orientation of the anisotropic axis throughout the 1D polymeric chain. In addition, it is also reported that the presence of weak π accepter ligands in the distorted axial position enhance the easy-axis anisotropy.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
45
|
Mondal A, Roy S, Konar S. Remarkable Energy Barrier for Magnetization Reversal in 3D and 2D Dysprosium-Chloranilate-Based Coordination Polymers. Chemistry 2020; 26:8774-8783. [PMID: 32315101 DOI: 10.1002/chem.202000438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/16/2020] [Indexed: 12/26/2022]
Abstract
Herein, two coordination polymers (CPs) [{Dy(Cl2 An)1.5 (CH3 OH)}⋅4.5 H2 O]n (1) and [Dy(Cl2 An)1.5 (DMF)2 ]n (2), in which Cl2 An is chloranilate (2,5-dihydroxy-1,4-benzoquinone dianion), exhibiting field-induced single-molecule magnet behavior with moderate barrier of magnetization reversal are reported. Detailed structural and topological analysis disclosed that 1 has a 3D network, whereas 2 has a 2D layered-type structure. In both CPs, magnetic measurements showed weak antiferromagnetic exchange interaction between the dysprosium centers and field-induced slow magnetic relaxation with barriers of 175(9)K and 145(7)K for 1 and 2, respectively. Notably, the energy barriers of magnetization reversal of 1 and 2 are remarkable for metal-chloranilate-based 3D (1) and 2D (2) CPs. The temperature and field dependence of relaxation time indicate the presence of multiple relaxation pathways, such as direct, quantum tunneling of magnetization, Raman, and Orbach processes, in both CPs. Ab initio theoretical calculations reinforced the experimentally observed higher energy barrier in 1 as compared with 2 due to the presence of large transverse anisotropy in the ground state in the latter. The average transition magnetic moment between the computed low-lying spin-orbit states also rationalized the relaxation as Orbach and Raman processes through the first excited state. BS-DFT calculations were carried out for both CPs to provide more insight into the exchange interaction.
Collapse
Affiliation(s)
- Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Subhadip Roy
- Department of Chemistry, The ICFAI University Tripura, Kamalghat, Mohanpur, Agartala, Tripura, 799210, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal By-pass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
46
|
Ding Y, Han T, Zhai Y, Reta D, Chilton NF, Winpenny REP, Zheng Y. A Study of Magnetic Relaxation in Dysprosium(III) Single‐Molecule Magnets. Chemistry 2020; 26:5893-5902. [DOI: 10.1002/chem.202000646] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/17/2020] [Indexed: 02/07/2023]
Affiliation(s)
- You‐Song Ding
- Frontier Institute of Science and Technology (FIST)State Key Laboratory for Mechanical Behavior of MaterialsMOE Key Laboratory for Nonequilibrium Synthesis andModulation of Condensed Matter, and School of ScienceXi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Tian Han
- Frontier Institute of Science and Technology (FIST)State Key Laboratory for Mechanical Behavior of MaterialsMOE Key Laboratory for Nonequilibrium Synthesis andModulation of Condensed Matter, and School of ScienceXi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
| | - Yuan‐Qi Zhai
- Frontier Institute of Science and Technology (FIST)State Key Laboratory for Mechanical Behavior of MaterialsMOE Key Laboratory for Nonequilibrium Synthesis andModulation of Condensed Matter, and School of ScienceXi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
| | - Daniel Reta
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Yan‐Zhen Zheng
- Frontier Institute of Science and Technology (FIST)State Key Laboratory for Mechanical Behavior of MaterialsMOE Key Laboratory for Nonequilibrium Synthesis andModulation of Condensed Matter, and School of ScienceXi'an Jiaotong University 99 Yanxiang Road, Xi'an Shaanxi 710054 P.R. China
| |
Collapse
|
47
|
Chen SM, Zhang YQ, Xiong J, Wang BW, Gao S. Adducts of Tris(alkyl) Holmium(III) Showing Magnetic Relaxation. Inorg Chem 2020; 59:5835-5844. [DOI: 10.1021/acs.inorgchem.9b03264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi-Ming Chen
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
48
|
Jin P, Zhai Y, Yu K, Winpenny REP, Zheng Y. Dysprosiacarboranes as Organometallic Single‐Molecule Magnets. Angew Chem Int Ed Engl 2020; 59:9350-9354. [DOI: 10.1002/anie.202001401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Peng‐Bo Jin
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Yuan‐Qi Zhai
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Ke‐Xin Yu
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | | | - Yan‐Zhen Zheng
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| |
Collapse
|
49
|
Jin P, Zhai Y, Yu K, Winpenny REP, Zheng Y. Dysprosiacarboranes as Organometallic Single‐Molecule Magnets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng‐Bo Jin
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Yuan‐Qi Zhai
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | - Ke‐Xin Yu
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| | | | - Yan‐Zhen Zheng
- Frontier Institute of Science and Technology (FIST)Xi'an Jiaotong University Shenzhen Research SchoolState Key Laboratory of Mechanical BehaviorMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MaterXi'an Key Laboratory of Sustainable Energy and Materials Chemistry and School of ScienceXi'an Jiaotong University 99 Yanxiang Road Xi'an Shaanxi 710054 P. R. China
| |
Collapse
|
50
|
Fan K, Bao SS, Huo R, Huang XD, Liu YJ, Yu ZW, Kurmoo M, Zheng LM. Luminescent Ir(iii)–Ln(iii) coordination polymers showing slow magnetization relaxation. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01504c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two structural types of iridium(iii)–lanthanide(iii) coordination polymers, single-chain Ir2Ln and double-chain Ir4Ln2 (Ln = Gd, Dy, Er, and Yb), have been prepared. SMM behaviour and NIR luminescence were observed for the Ir–Er and Ir–Yb systems.
Collapse
Affiliation(s)
- Kun Fan
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Ran Huo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Yu-Jie Liu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Zi-Wen Yu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| | - Mohamedally Kurmoo
- Institut de Chimie
- Université de Strasbourg CNRS-UMR7177
- Strasbourg Cedex 67007
- France
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
| |
Collapse
|