1
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Porphyrin-based covalent organic frameworks as doxorubicin delivery system for chemo-photodynamic synergistic therapy of tumors. Photodiagnosis Photodyn Ther 2024; 46:104063. [PMID: 38527660 DOI: 10.1016/j.pdpdt.2024.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Photodynamic therapy (PDT) is a non-invasive treatment method that has garnered significant attention in recent years. Nanoparticle-based drug delivery systems can achieve targeted drug release, thereby significantly reducing side effects and enhancing therapeutic efficacy. In this study, a covalent organic framework (COF) with an approximately spherical structure connected by azo bonds was synthesized. The synthesized COF was utilized as a hypoxia-responsive carrier for doxorubicin (DOX) drug delivery and was modified with hyaluronic acid (HA). DOX@COF@HA exhibited a reactive release under hypoxic conditions. Under normal oxygen conditions, the release of DOX was 16.9 %, increasing to 60.2 % with the addition of sodium hydrosulfite. In vitro experiments revealed that the group combining photodynamic therapy with chemotherapy exhibited the lowest survival rates for 4T1 and MHCC97-L cells. In vivo experiments further validated the effectiveness of combination therapy, resulting in a tumor volume of only 33 mm3 after treatment, with no significant change in mouse weight during the treatment period. DOX@COF@HA nanoplatforms exhibit substantial potential in tumor treatment.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan 030012, PR China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China; Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, PR China.
| |
Collapse
|
2
|
Chen S, Cao R, Xiang L, Li Z, Chen H, Zhang J, Feng X. Research progress in nucleus-targeted tumor therapy. Biomater Sci 2023; 11:6436-6456. [PMID: 37609783 DOI: 10.1039/d3bm01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The nucleus is considered the most important organelle in the cell as it plays a central role in controlling cell reproduction, metabolism, and the cell cycle. The successful delivery of drugs into the nucleus can achieve excellent therapeutic effects, which reveals the potential of nucleus-targeted therapy in precision medicine. However, the transportation of therapeutics into the nucleus remains a significant challenge due to various biological barriers. Herein, we summarize the recent progress in the nucleus-targeted drug delivery system (NDDS). The structures of the nucleus and nuclear envelope are first described in order to understand the mechanisms by which drugs cross the nuclear envelope. Then, various drug delivery strategies based on the mechanisms and their applications are discussed. Finally, the challenges and solutions in the field of nucleus-targeted drug delivery are raised for developing a more efficient NDDS and promoting its clinical transformation.
Collapse
Affiliation(s)
- Shaofeng Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Rumeng Cao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ling Xiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Ziyi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Jiumeng Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China.
| |
Collapse
|
3
|
Sisakhtnezhad S, Rahimi M, Mohammadi S. Biomedical applications of MnO 2 nanomaterials as nanozyme-based theranostics. Biomed Pharmacother 2023; 163:114833. [PMID: 37150035 DOI: 10.1016/j.biopha.2023.114833] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023] Open
Abstract
Manganese dioxide (MnO2) nanoenzymes/nanozymes (MnO2-NEs) are 1-100 nm nanomaterials that mimic catalytic, oxidative, peroxidase, and superoxide dismutase activities. The oxidative-like activity of MnO2-NEs makes them suitable for developing effective and low-cost colorimetric detection assays of biomolecules. Interestingly, MnO2-NEs also demonstrate scavenging properties against reactive oxygen species (ROS) in various pathological conditions. In addition, due to the decomposition of MnO2-NEs in the tumor microenvironment (TME) and the production of Mn2+, they can act as a contrast agent for improving clinical imaging diagnostics. MnO2-NEs also can use as an in situ oxygen production system in TME, thereby overcoming hypoxic conditions and their consequences in the progression of cancer. Furthermore, MnO2-NEs as a shell and coating make the nanosystems smart and, therefore, in combination with other nanomaterials, the MnO2-NEs can be used as an intelligent nanocarrier for delivering drugs, photosensitizers, and sonosensitizers in vivo. Moreover, these capabilities make MnO2-NEs a promising candidate for the detection and treatment of different human diseases such as cancer, metabolic, infectious, and inflammatory pathological conditions. MnO2-NEs also have ROS-scavenging and anti-bacterial properties against Gram-positive and Gram-negative bacterial strains, which make them suitable for wound healing applications. Given the importance of nanomaterials and their potential applications in biomedicine, this review aimed to discuss the biochemical properties and the theranostic roles of MnO2-NEs and recent advances in their use in colorimetric detection assays of biomolecules, diagnostic imaging, drug delivery, and combinatorial therapy applications. Finally, the challenges of MnO2-NEs applications in biomedicine will be discussed.
Collapse
Affiliation(s)
| | - Matin Rahimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Fan H, Guo Z. Tumor microenvironment-responsive manganese-based nanomaterials for cancer treatment. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Yu Q, Zhou J, Song J, Zhou H, Kang B, Chen HY, Xu JJ. A Cascade Nanoreactor of Metal-Protein-Polyphenol Capsule for Oxygen-Mediated Synergistic Tumor Starvation and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206592. [PMID: 36437115 DOI: 10.1002/smll.202206592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Starvation therapy kills tumor cells via consuming glucose to cut off their energy supply. However, since glucose oxidase (GOx)-mediated glycolysis is oxygen-dependent, the cascade reaction based on GOx faces the challenge of a hypoxic tumor microenvironment. By decomposition of glycolysis production of H2 O2 into O2 , starvation therapy can be enhanced, but chemodynamic therapy is limited. Here, a close-loop strategy for on demand H2 O2 and O2 delivery, release, and recycling is proposed. The nanoreactor (metal-protein-polyphenol capsule) is designed by incorporating two native proteins, GOx and hemoglobin (Hb), in polyphenol networks with zeolitic imidazolate framework as sacrificial templates. Glycolysis occurs in the presence of GOx with O2 consumption and the produced H2 O2 reacts with Hb to produce highly cytotoxic hydroxyl radicals (•OH) and methemoglobin (MHb) (Fenton reaction). Benefiting from the different oxygen carrying capacities of Hb and MHb, oxygen on Hb is rapidly released to supplement its consumption during glycolysis. Glycolysis and Fenton reactions are mutually reinforced by oxygen supply, consuming more glucose and producing more hydroxyl radicals and ultimately enhancing both starvation therapy and chemodynamic therapy. This cascade nanoreactor exhibits high efficiency for tumor suppression and provides an effective strategy for oxygen-mediated synergistic starvation therapy and chemodynamic therapy.
Collapse
Affiliation(s)
- Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Zou Y, Huang D, He S, Song X, Liu W, Sun W, Du J, Fan J, Peng X. Cooperatively enhanced photothermal-chemotherapy via simultaneously downregulating HSPs and promoting DNA alkylation in cancer cells. Chem Sci 2023; 14:1010-1017. [PMID: 36755714 PMCID: PMC9890646 DOI: 10.1039/d2sc06143k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022] Open
Abstract
Photothermal therapy (PTT) has emerged as one of the important strategies for cancer treatment due to its precision and no drug resistance. However, upregulation of heat shock protein (HSP) expression during PTT severely limits its overall therapeutic effect. Accordingly, in this study, we developed a new anticancer strategy based on an l-glutathione (GSH)-activated prodrug (Cy-S-S-Cbl), which consisted of an alkylating reagent (Cbl) covalently linked to a photothermal photosensitizer (Cy7), to achieve cooperatively enhanced photothermal-chemotherapy. In the presence of overexpressed GSH in cancer cells, Cy-S-S-Cbl was converted into Cy-NH2 to achieve photothermal effect enhancement by the photo-induced electron transfer (PET) effect and release the alkylation reagent. Meanwhile, the photothermal effect of Cy-NH2 enhanced the DNA alkylation of chemotherapy drugs. Surprisingly, we first found that the therapeutic efficacy of PTT was improved owing to the down-regulation of heat shock protein 70 (HSP70) by chemotherapy. The two treatments had a synergistic promotion effect achieving higher cancer cell killing efficiency. Under 808 nm light irradiation, Cy-S-S-Cbl could effectively realize selective killing of cancer cells and tumor growth inhibition. Therefore, we strongly believe that this efficient cooperative design strategy will provide a new idea to improve the treatment efficiency of prodrugs.
Collapse
Affiliation(s)
- Yang Zou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Daipeng Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Shan He
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics, Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Xuefang Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Weijian Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Research Institute of Dalian University of Technology in Shenzhen Shenzhen 518057 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
- Research Institute of Dalian University of Technology in Shenzhen Shenzhen 518057 China
| |
Collapse
|
7
|
Zhang Y, Liu L, Li W, Zhang C, Song T, Wang P, Sun D, Huang X, Qin X, Ran L, Tian G, Qian J, Zhang G. PDGFB-targeted functional MRI nanoswitch for activatable T 1-T 2 dual-modal ultra-sensitive diagnosis of cancer. J Nanobiotechnology 2023; 21:9. [PMID: 36609374 PMCID: PMC9824934 DOI: 10.1186/s12951-023-01769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
As one of the most significant imaging modalities currently available, magnetic resonance imaging (MRI) has been extensively utilized for clinically accurate cancer diagnosis. However, low signal-to-noise ratio (SNR) and low specificity for tumors continue to pose significant challenges. Inspired by the distance-dependent magnetic resonance tuning (MRET) phenomenon, the tumor microenvironment (TME)-activated off-on T1-T2 dual-mode MRI nanoswitch is presented in the current study to realize the sensitive early diagnosis of tumors. The tumor-specific nanoswitch is designed and manufactured on the basis of PDGFB-conjugating ferroferric oxide coated by Mn-doped silica (PDGFB-FMS), which can be degraded under the high-concentration GSH and low pH in TME to activate the T1-T2 dual-mode MRI signals. The tumor-specific off-on dual-mode MRI nanoswitch can significantly improve the SNR and is used successfully for the accurate diagnosis of early-stage tumors, particularly for orthotopic prostate cancer. In addition, the systemic delivery of the nanoswitch did not cause blood or tissue damage, and it can be excreted out of the body in a timely manner, demonstrating excellent biosafety. Overall, the strategy is a significant step in the direction of designing off-on dual-mode MRI nanoprobes to improve imaging accuracy, which opens up new avenues for the development of new MRI probes.
Collapse
Affiliation(s)
- Ya’nan Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China
| | - Lu Liu
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Wenling Li
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Caiyun Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Tianwei Song
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Peng Wang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Daxi Sun
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xiaodan Huang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Xia Qin
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Lang Ran
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Geng Tian
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| | - Junchao Qian
- grid.9227.e0000000119573309Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 People’s Republic of China ,grid.410587.fDepartment of Radiation Oncology, School of Medicine, Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Guilong Zhang
- grid.440653.00000 0000 9588 091XSchool of Medical Imaging, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, 264003 People’s Republic of China ,grid.440653.00000 0000 9588 091XSchool of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003 People’s Republic of China
| |
Collapse
|
8
|
Li H, Lin L, Yan R, Chen Z, Wen X, Zeng X, Tao C. Multi-functional Fe3O4@HMPDA@G5-Au core-releasable satellite nano drug carriers for multimodal treatment of tumor cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Zhang JJ, Nie C, Fu WL, Cheng FL, Chen P, Gao ZF, Wu Y, Shen Y. Photoresponsive DNA-Modified Magnetic Bead-Assisted Rolling Circle Amplification-Driven Visual Photothermal Sensing of Escherichia coli. Anal Chem 2022; 94:16796-16802. [DOI: 10.1021/acs.analchem.2c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jing Jing Zhang
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan250014, China
| | - Chao Nie
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei230009, China
| | - Wen Long Fu
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan250014, China
| | - Feng Li Cheng
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan250014, China
| | - Pu Chen
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan250014, China
| | - Zhong Feng Gao
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan250014, China
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing100022, China
| | - Yizhong Shen
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei230009, China
| |
Collapse
|
11
|
Hou Y, Fei Y, Liu Z, Liu Y, Li M, Luo Z. Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. J Nanobiotechnology 2022; 20:366. [PMID: 35953821 PMCID: PMC9367102 DOI: 10.1186/s12951-022-01579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Surgery is currently a mainstream treatment modality for various solid tumor indications. However, aggressive resection of tumor tissues frequently causes postoperative complications, which severely undermine the well-being of patients. Moreover, the residue tumor cells may substantially increase the risk of local and distant tumor relapse. The recent development in black phosphorus (BP)-based nanomaterials offers a promising opportunity to address these clinical challenges. BP is an emerging nanomaterial with excellent biocompatibility and versatile functionality, which has already demonstrated great potential for a variety of biomedical applications including tumor therapy and tissue engineering. In this review, the recent advances in BP-based nanobiomaterials for the post-surgery treatment of solid tumor have been summarized, while specific emphasis was placed on their capability to continuously inhibit residue tumor growth at the surgery site as well as stimulating various healing mechanisms, aiming to preventing tumor relapse while promoting the healing of surgery-induced traumatic soft/hard tissue injuries. It is anticipated that the nanoengineered BP-based materials may open new avenues to tackle those clinical challenges in surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zehong Liu
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China. .,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
12
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Wang T, Zhang X, Xu Y, Xu Y, Zhang Y, Zhang K. Emerging nanobiotechnology-encoded relaxation tuning establishes new MRI modes to localize, monitor and predict diseases. J Mater Chem B 2022; 10:7361-7383. [PMID: 35770674 DOI: 10.1039/d2tb00600f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic resonance imaging (MRI) is one of the most important techniques in the diagnosis of many diseases including cancers, where contrast agents (CAs) are usually necessary to improve its precision and sensitivity. Previous MRI CAs are confined to the signal-to-noise ratio (SNR) elevation of lesions for precisely localizing lesions. As nanobiotechnology advances, some new MRI CAs or nanobiotechnology-enabled MRI modes have been established to vary the longitudinal or transverse relaxation of CAs, which are harnessed to detect lesion targets, monitor disease evolution, predict or evaluate curative effect, etc. These distinct cases provide unexpected insights into the correlation of the design principles of these nanobiotechnologies and corresponding MRI CAs with their potential applications. In this review, first, we briefly present the principles, classifications and applications of conventional MRI CAs, and then elucidate the recent advances in relaxation tuning via the development of various nanobiotechnologies with emphasis on the design strategies of nanobiotechnology and the corresponding MRI CAs to target the tumor microenvironment (TME) and biological targets or activities in tumors or other diseases. In addition, we exemplified the advantages of these strategies in disease theranostics and explored their potential application fields. Finally, we analyzed the present limitations, potential solutions and future development direction of MRI after its combination with nanobiotechnology.
Collapse
Affiliation(s)
- Taixia Wang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Xueni Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yuan Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yingchun Xu
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China.
| | - Yifeng Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Kun Zhang
- Central Laboratory and Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China. .,Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center for Interventional Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| |
Collapse
|
14
|
Abstract
Nanozyme is a series of nanomaterials with enzyme-mimetic activities that can proceed with the catalytic reactions of natural enzymes. In the field of biomedicine, nanozymes are capturing tremendous attention due to their high stability and low cost. Enzyme-mimetic activities of nanozymes can be regulated by multiple factors, such as the chemical state of metal ion, pH, hydrogen peroxide (H2O2), and glutathione (GSH) level, presenting great promise for biomedical applications. Over the past decade, multi-functional nanozymes have been developed for various biomedical applications. To promote the understandings of nanozymes and the development of novel and multifunctional nanozymes, we herein provide a comprehensive review of the nanozymes and their applications in the biomedical field. Nanozymes with versatile enzyme-like properties are briefly overviewed, and their mechanism and application are discussed to provide understandings for future research. Finally, underlying challenges and prospects of nanozymes in the biomedical frontier are discussed in this review.
Collapse
|
15
|
Yang Z, Wang D, Zhang C, Liu H, Hao M, Kan S, Liu D, Liu W. The Applications of Gold Nanoparticles in the Diagnosis and Treatment of Gastrointestinal Cancer. Front Oncol 2022; 11:819329. [PMID: 35127533 PMCID: PMC8807688 DOI: 10.3389/fonc.2021.819329] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the morbidity and mortality of gastrointestinal cancer have remained high in China. Due to the deep location of the gastrointestinal organs, such as gastric cancer, the early symptoms of cancer are not obvious. It is generally discovered at an advanced stage with distant metastasis and lymph node infiltration, making it difficult to cure. Therefore, there is a significant need for novel technologies that can effectively diagnose and treat gastrointestinal cancer, ultimately reducing its mortality. Gold nanoparticles (GNPs), a type of nanocarrier with unique optical properties and remarkable biocompatibility, have the potential to influence the fate of cancer by delivering drugs, nucleic acids to cancer cells and tissues. As a safe and reliable visualization agent, GNPs can track drugs and accurately indicate the location and boundaries of cancer, opening up new possibilities for cancer treatment. In addition, GNPs have been used in photodynamic therapy to deliver photosensitizers, as well as in combination with photothermal therapy. Therefore, GNPs can be used as a safe and effective nanomaterial in the treatment and diagnosis of gastrointestinal cancer.
Collapse
Affiliation(s)
- Zhijing Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chenyu Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Huimin Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zhang Z, Ji Y, Lin C, Tao L. Thermosensitive hydrogel-functionalized gold nanorod/mesoporous MnO 2 nanoparticles for tumor cell-triggered drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112504. [PMID: 34857290 DOI: 10.1016/j.msec.2021.112504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
MnO2 owns distinct redox, imaging, and degradable properties corresponding to the tumor microenvironment. However, the onefold structure and non-modifiable property cause many obstacles to anticancer applications. In this report, we first prepared a typical core-shell gold nanorod (GNR)/manganese dioxide (MnO2) nanoparticles (GNR/MnO2 NPs). Interestingly, the MnO2 had a mesoporous channel and modifiable hydroxyl group (OH). Here, the unique 'OH' groups were modified and further grafted with poly(N-isopropylacrylamide-co-acrylic acid) (PNA). As a dual-sensitive hydrogel, it was selected as the thermal/pH-sensitive component in the hybrid nanoparticles (GNR/MnO2/PNA NPs). The anticancer drug doxorubicin hydrochloride (DOX) was selected and loaded into the hybrid nanoparticles (GNR/MnO2/PNA-DOX NPs). The GNR/MnO2/PNA NPs achieved satisfying drug-loading efficiency and glutathione (GSH)/pH/thermal-responsive drug-controlled release. As a side benefit, the GNR/MnO2/PNA NPs showed potential as excellent near-infrared (NIR)-excited nanoplatforms for photothermal therapy (PTT). Delightedly, the studies demonstrated that the GNR/MnO2/PNA-DOX NPs showed a noticeable killing effect on tumor cells, whether it is tumor cell-triggered drug release or photothermal effect. Besides, it not only could enhance mitochondrial damage but also could inhibit the migration and invasion of tumor cells. Quite the reverse, it had little negative impact on normal cells. The feature can prevent anticancer drugs and nanoparticles from killing normal cells. Consequently, GNR/MnO2/PNA NPs have potential applications in drug delivery and synergistic therapy due to these advantageous features.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
17
|
Chen M, Song J, Zhu J, Hong G, An J, Feng E, Peng X, Song F. A Dual-Nanozyme-Catalyzed Cascade Reactor for Enhanced Photodynamic Oncotherapy against Tumor Hypoxia. Adv Healthc Mater 2021; 10:e2101049. [PMID: 34494723 DOI: 10.1002/adhm.202101049] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Indexed: 01/03/2023]
Abstract
Tumor hypoxia is a typical characteristic of tumor microenvironment (TME), which seriously compromises the therapeutic effect of photodynamic therapy (PDT). The development of nanozymes with oxygen-generation ability is a promising strategy to overcome the oxygen-dependent of PDT but remained a great challenge. Herein, a dual-nanozymes based cascade reactor HAMF is proposed to alleviate tumor hypoxia for enhanced PDT. The hollow mesoporous silica nanoparticles (HMSNs) are constructed as an excellent nanocarrier to load ultra-small gold nanoparticles (Au NPs) and manganese dioxide (MnO2 ) shell via in situ reduction method, and further coordination with an efficient photosensitizer 4-DCF-MPYM (4-FM), a thermally activated delayed fluorescence (TADF) fluorescein derivative. With the response to TME, MnO2 can catalyze endogenous H2 O2 into O2 and subsequently accelerating glucose oxidation by Au NPs to produce additional H2 O2 , which is reversely used as the substrate for MnO2 -catalyzed reaction, thereby constantly producing singlet oxygen (1 O2 ) for enhanced PDT upon light irradiation. This work proposed a cascade reactor based on dual-nanozyme to relieve tumor hypoxia for effective tumor suppression, which may enrich the application of multi-nanozymes in biomedicine.
Collapse
Affiliation(s)
- Miaomiao Chen
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Jitao Song
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| | - Jialong Zhu
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Jing An
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Erting Feng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 P. R. China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
18
|
Jin X, Yang W, Xu Y, Bian K, Zhang B. Emerging strategies of activatable MR imaging probes and their advantages for biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiao Jin
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Weitao Yang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Yan Xu
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Kexin Bian
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Bingbo Zhang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| |
Collapse
|
19
|
Wang J, Liu YX, Li XL, Chen HY, Xu JJ. Core-Shell Plasmonic Nanomaterials toward: Dual-Mode Imaging Analysis of Glutathione and Enhanced Chemodynamic Therapy. Anal Chem 2021; 93:10317-10325. [PMID: 34270215 DOI: 10.1021/acs.analchem.1c01858] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying-Xue Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
A MnO 2-coated multivariate porphyrinic metal-organic framework for oxygen self-sufficient chemo-photodynamic synergistic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102440. [PMID: 34256062 DOI: 10.1016/j.nano.2021.102440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Lately, chemotherapy and photodynamic therapy (PDT) synergistic therapy has become a promising anti-cancer treatment mean. However, the hypoxia in tumor leads to huge impediments to the oxygen-dependentPDT effects. In this work, a multifunctional nanoplatform (TUDMP) based on a multivariable porphyrin-nMOFs core and a manganese dioxide (MnO2) shell was prepared for relieving tumor hypoxia and enhancing chemo-photodynamic synergistic therapy performance. The obtained TUDMP nanoplatform could effectively catalyze the hydrolysis of hydrogen peroxide to generate oxygen and also lead to consumption of antioxidant GSH, thereby facilitating the production of cytotoxic reactive oxygen species (ROS) by photosensitizer under laser irradiation. More importantly, the decomposition of the MnO2 shell would further promote the release of the loaded doxorubicin (DOX), and thus an efficient chemo-PDT synergistic therapy was realized. Both in vitro and in vivo experimental results demonstrated the oxygen self-sufficient multifunctional nanoplatform could exhibit significantly enhanced anticancer efficiencies compared with chemotherapy or PDT alone.
Collapse
|
21
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Zhou X, He C, Liu M, Chen Q, Zhang L, Xu X, Xu H, Qian Y, Yu F, Wu Y, Han Y, Xiao B, Tang J, Hu H. Self-assembly of hyaluronic acid-mediated tumor-targeting theranostic nanoparticles. Biomater Sci 2021; 9:2221-2229. [PMID: 33507179 DOI: 10.1039/d0bm01855d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Theranostic nanoparticles (NPs) have emerged as promising candidates for cancer diagnosis and treatment. Manganese dioxide (MnO2)-based NPs are potential contrast agents with excellent paramagnetic property and biocompatibility, exhibiting satisfactory magnetic resonance imaging (MRI) effects and biological safety. Recently, hyaluronic acid (HA) has gained increasing interest due to its tumor-targeting ability, which can improve the tumor affinity of manganese dioxide (MnO2)-based NPs. In this study, HA-coated and albumin (BSA)-templated MnO2 and polydopamine hybrid nanoparticles (HMDNs) with tumor-targeting and superior imaging capability were fabricated via modifying the nanoparticles prepared by integrating dopamine polymerization and MnO2 biomineralization. The modification was found to enhance the cellular uptake of HMDNs by cancer cells. The prepared HMDN had high MRI contrasting capability with a longitudinal relaxivity of 22.2 mM-1 s-1 and strong photothermal therapy (PTT) effects with nearly complete tumor ablation under laser irradiation in vivo. HMDNs also showed effective clearance through kidneys, with no toxicity to important tissues. Therefore, HMDNs with superior imaging and PTT capability presented a new method to prepare tumor-targeting multifunctional nanotheranostics.
Collapse
Affiliation(s)
- Xiaoxuan Zhou
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang M, Li B, Du Y, Bu H, Tang Y, Huang Q. Fluorescence imaging-guided cancer photothermal therapy using polydopamine and graphene quantum dot-capped Prussian blue nanocubes. RSC Adv 2021; 11:8420-8429. [PMID: 35423381 PMCID: PMC8695181 DOI: 10.1039/d0ra10491d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, imaging-guided photothermal tumor ablation has attracted intense research interest as one of the most exciting strategies for cancer treatment. Herein, we prepared polydopamine and graphene quantum dot-capped Prussian blue nanocubes (PB@PDA@GQDs, PBPGs) with high photothermal conversion efficiency and excellent fluorescence performance for imaging-guided cancer treatment. Transmission electron microscopy (TEM), UV-vis absorption spectroscopy (UV-vis), fluorescence spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to characterize their morphology and structures. The photothermal conversion efficiency and therapeutic effect were evaluated in vitro and in vivo. Results revealed that this nanoagent had excellent biocompatibility and enhanced the photothermal effect compared to blue nanocubes (PBs) and polydopamine-capped Prussian blue nanocubes (PB@PDA, PBPs). Therefore, our study may open a new path for the production of PB-based nanocomposites as theranostic nanoagents for imaging-guided photothermal cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Baolong Li
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Yu Du
- Medical Technology School, Xuzhou Medical University Xuzhou Jiangsu 221000 China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants, Jiangsu Province and School of Life Sciences, Jiangsu Normal University Xuzhou Jiangsu 221116 China
- Department of Physiology, Xuzhou Medical University Xuzhou Jiangsu 221004 China
| | - Yanyan Tang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University Tong Shan No. 209 Xuzhou City 221004 Jiangsu 221004 China +86-516-83262091
| |
Collapse
|
24
|
Ouyang R, Cao P, Jia P, Wang H, Zong T, Dai C, Yuan J, Li Y, Sun D, Guo N, Miao Y, Zhou S. Bistratal Au@Bi 2S 3 nanobones for excellent NIR-triggered/multimodal imaging-guided synergistic therapy for liver cancer. Bioact Mater 2021; 6:386-403. [PMID: 32954056 PMCID: PMC7481884 DOI: 10.1016/j.bioactmat.2020.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
To fabricate a highly biocompatible nanoplatform enabling synergistic therapy and real-time imaging, novel Au@Bi2S3 core shell nanobones (NBs) (Au@Bi2S3 NBs) with Au nanorods as cores were synthesized. The combination of Au nanorods with Bi2S3 film made the Au@Bi2S3 NBs exhibit ultrahigh photothermal (PT) conversion efficiency, remarkable photoacoustic (PA) imaging and high computed tomography (CT) performance; these Au@Bi2S3 NBs thus are a promising nanotheranostic agent for PT/PA/CT imaging. Subsequently, poly(N-vinylpyrrolidone)-modified Au@Bi2S3 NBs (Au@Bi2S3-PVP NBs) were successfully loaded with the anticancer drug doxorubicin (DOX), and a satisfactory pH sensitive release profile was achieved, thus revealing the great potential of Au@Bi2S3-PVP NBs in chemotherapy as a drug carrier to deliver DOX into cancer cells. Both in vitro and in vivo investigations demonstrated that the Au@Bi2S3-PVP NBs possessed multiple desired features for cancer therapy, including extremely low toxicity, good biocompatibility, high drug loading ability, precise tumor targeting and effective accumulation. Highly efficient ablation of the human liver cancer cell HepG2 was achieved through Au@Bi2S3-PVP NB-mediated photothermal therapy (PTT). As both a contrast enhancement probe and therapeutic agent, Au@Bi2S3-PVP NBs provided outstanding NIR-triggered multi-modal PT/PA/CT imaging-guided PTT and effectively inhibited the growth of HepG2 liver cancer cells via synergistic chemo/PT therapy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Penghui Cao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Pengpeng Jia
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Tianyu Zong
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jie Yuan
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Dong Sun
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
25
|
Wang HY, Zhang Y, Ren XH, He XW, Li WY, Zhang YK. HA targeted-biodegradable nanocomposites responsive to endogenous and exogenous stimulation for multimodal imaging and chemo-/photothermal therapy. NANOSCALE 2021; 13:886-900. [PMID: 33367454 DOI: 10.1039/d0nr07121h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multimodal imaging-guided accurate tumor-targeting and efficient synergistic therapy are of great importance for cancer therapy in vitro and in vivo. In this study, a biocompatible, tumor-targeted, on-demand chemo-/photothermal therapeutic nanoplatform (HIDSiGdNPs@PDA-HA) based on hollow mesoporous organic silica nanoparticles (HMONs) was used for bimodal imaging and multi-factor stepwise response for drug release and treatment. Targeted molecule hyaluronic acid (HA) promoted the endocytosis of HIDSiGdNPs@PDA-HA in HeLa cancer cells. The gatekeeper pH-/light-sensitive PDA coating was stimulated by the endogenous tumor acidic microenvironment and exogenous NIR laser to release doxorubicin (DOX). Thereafter, HMONs containing S-S bonds were reduced and degraded by endogenous glutathione (GSH), and the drug was further released rapidly to kill cancer cells. Importantly, the photothermal reagent indocyanine green (ICG) was always retained in the carrier, improving the effectiveness of photothermal therapy. The loaded Gd-doped silicon nanoparticles (SiGdNPs) combined with DOX and ICG led to multi-color fluorescence imaging in vitro and magnetic resonance imaging in vivo to realize targeted diagnosis and track drug distribution. The treatment results of tumor-bearing mice also proved the excellent synergistic therapy. It is believed that the multifunctional nanomaterials with dual mode imaging capability and targeted and controlled collaborative therapy would provide an alternative for accurate diagnosis and efficient treatment.
Collapse
Affiliation(s)
- Hai-Yan Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yan Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xing-Hui Ren
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China. and National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
26
|
Nwasike C, Purr E, Yoo E, Nagi JS, Doiron AL. Activatable Nanoparticles: Recent Advances in Redox-Sensitive Magnetic Resonance Contrast Agent Candidates Capable of Detecting Inflammation. Pharmaceuticals (Basel) 2021; 14:69. [PMID: 33467028 PMCID: PMC7829999 DOI: 10.3390/ph14010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of activatable magnetic resonance (MR) contrast agents has prompted significant interest in the detection of functional markers of diseases, resulting in the creation of a plethora of nanoprobes capable of detecting these biomarkers. These markers are commonly dysregulated in several chronic diseases, specifically select cancers and inflammatory diseases. Recently, the development of redox-sensitive nanoparticle-based contrast agents has gained momentum given advances in medicine linking several inflammatory diseases to redox imbalance. Researchers have pinpointed redox dysregulation as an opportunity to use activatable MR contrast agents to detect and stage several diseases as well as monitor the treatment of inflammatory diseases or conditions. These new classes of agents represent an advancement in the field of MR imaging as they elicit a response to stimuli, creating contrast while providing evidence of biomarker changes and commensurate disease state. Most redox-sensitive nanoparticle-based contrast agents are sensitive to reductive glutathione or oxidative reactive oxygen species. In this review, we will explore recent investigations into redox-activatable, nanoparticle-based MR contrast agent candidates.
Collapse
Affiliation(s)
- Chukwuazam Nwasike
- Department of Biomedical Engineering, Binghamton University (SUNY), Binghamton, NY 13902, USA; (C.N.); (E.P.)
| | - Erin Purr
- Department of Biomedical Engineering, Binghamton University (SUNY), Binghamton, NY 13902, USA; (C.N.); (E.P.)
| | - Eunsoo Yoo
- Department of Otolaryngology-Head & Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jaspreet Singh Nagi
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| | - Amber L. Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
27
|
Sun C, Lu J, Wang J, Hao P, Li C, Qi L, Yang L, He B, Zhong Z, Hao N. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. J Nanobiotechnology 2021; 19:14. [PMID: 33413405 PMCID: PMC7791786 DOI: 10.1186/s12951-020-00761-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/19/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Nano-drug delivery systems show considerable promise for effective cancer therapy. Polymeric micelles have attracted extensive attention as practical nanocarriers for target drug delivery and controlled drug delivery system, however, the distribution of micelles and the release of the drug are difficult to trace in cancer cells. Therefore, the construction of a redox-sensitive multifunctional drug delivery system for intelligent release of anticancer drugs and simultaneous diagnostic imaging and therapy remains an attractive research subject. RESULTS To construct a smart drug delivery system for simultaneous imaging and cancer chemotherapy, mPEG-ss-Tripp was prepared and self-assembled into redox-sensitive polymeric micelles with a diameter of 105 nm that were easily detected within cells using confocal laser scanning microscopy based on aggregation-induced emission. Doxorubicin-loaded micelles rapidly released the drug intracellularly when GSH reduced the disulfide bond. The drug-loaded micelles inhibited tumor xenografts in mice, while this efficacy was lower without the GSH-responsive disulfide bridge. These results establish an innovative multi-functional polymeric micelle for intracellular imaging and redox-triggered drug deliver to cancer cells. CONCLUSIONS A novel redox-sensitive drug delivery system with AIE property was constructed for simultaneous cellular imaging and intelligent drug delivery and release. This smart drug delivery system opens up new possibilities for multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Changzhen Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Ji Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ping Hao
- Biological group, Beijing Huimin School, Beijing, 100032, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lu Qi
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Lin Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Na Hao
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
28
|
Self-assembled heptamethine cyanine dye dimer as a novel theranostic drug delivery carrier for effective image-guided chemo-photothermal cancer therapy. J Control Release 2020; 329:50-62. [PMID: 33259849 DOI: 10.1016/j.jconrel.2020.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR)-induced dye-based theranostic drug delivery carriers are used for critical image-guided chemo-photothermal cancer therapy. However, most carriers fail to deliver sufficient heat and fluorescence efficiently due to direct π-π stacking of the aromatic rings of the NIR dye and drug. In the work reported herein, we examined a self-assembled heptamethine cyanine dye dimer (CyD) with improved heat and fluorescence delivery that was developed by manipulating the unique structural and optical properties of the dimer. The H-aggregation of CyD in an aqueous solution generated a great amount of heat by transforming the energy of the excited electrons into non-radiative energy. Moreover, the disulfide bond of CyD assisted nanoparticles with a drug by minimizing the interaction between the NIR dye and drug, and also by releasing the drug in a redox environment. As a result, DOX encapsulated within CyD (CyD/DOX) showed strong heat generation and fluorescence imaging in tumor-bearing mice, allowing detection of the tumor site and inhibition of tumor growth by chemo-photothermal therapy. The multiplicity of features supplied by the newly developed CyD demonstrated the potential of CyD/DOX as an NIR dye-based theranostic drug-delivery carrier for effective chemo-photothermal cancer therapy.
Collapse
|
29
|
Chen J, Zhu Y, Wu C, Shi J. Nanoplatform-based cascade engineering for cancer therapy. Chem Soc Rev 2020; 49:9057-9094. [PMID: 33112326 DOI: 10.1039/d0cs00607f] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various therapeutic techniques have been studied for treating cancer precisely and effectively, such as targeted drug delivery, phototherapy, tumor-specific catalytic therapy, and synergistic therapy, which, however, evoke numerous challenges due to the inherent limitations of these therapeutic modalities and intricate biological circumstances as well. With the remarkable advances of nanotechnology, nanoplatform-based cascade engineering, as an efficient and booming strategy, has been tactfully introduced to optimize these cancer therapies. Based on the designed nanoplatforms, pre-supposed cascade processes could be triggered under specific conditions to generate/deliver more therapeutic species or produce stronger tumoricidal effects inside tumors, aiming to achieve cancer therapy with increased anti-tumor efficacy and diminished side effects. In this review, the recent advances in nanoplatform-based cascade engineering for cancer therapy are summarized and discussed, with an emphasis on the design of smart nanoplatforms with unique structures, compositions and properties, and the implementation of specific cascade processes by means of endogenous tumor microenvironment (TME) resources and/or exogenous energy inputs. This fascinating strategy presents unprecedented potential in the enhancement of cancer therapies, and offers better controllability, specificity and effectiveness of therapeutic functions compared to the corresponding single components/functions. In the end, challenges and prospects of such a burgeoning strategy in the field of cancer therapy will be discussed, hopefully to facilitate its further development to meet the personalized treatment demands.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | | | | | | |
Collapse
|
30
|
Zhang Z, Ji Y. Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. NANOSCALE 2020; 12:17982-18003. [PMID: 32870227 DOI: 10.1039/d0nr04067c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanostructured manganese dioxide (MnO2) has attracted extensive attention in the field of anticancer applications. As we all know, the tumor microenvironment is usually characterized by a high glutathione (GSH) concentration, overproduced hydrogen peroxide (H2O2), acidity, and hypoxia, which affect the efficacy of many traditional treatments such as chemotherapy, radiotherapy, and surgery. Fortunately, as one kind of redox-active nanomaterial, nanostructured MnO2 has many excellent properties such as strong oxidation ability, excellent catalytic activity, and good biodegradability. It can be used effectively in diagnosis and treatment when it reacts with some harmful substances in the tumor site. It can not only enhance the therapeutic effect but also adjust the tumor microenvironment. Therefore, it is necessary to present the recent achievements and progression of nanostructured MnO2 for anticancer applications, including preparation methods, diagnosis, and treatment. Special attention was paid to photodynamic therapy (PDT), bioimaging and cancer diagnosis (BCD), and drug delivery systems (DDS). This review is expected to provide helpful guidance on further research of nanostructured MnO2 for anticancer applications.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | | |
Collapse
|
31
|
Yazdian-Robati R, Bayat P, Oroojalian F, Zargari M, Ramezani M, Taghdisi SM, Abnous K. Therapeutic applications of AS1411 aptamer, an update review. Int J Biol Macromol 2020; 155:1420-1431. [PMID: 31734366 DOI: 10.1016/j.ijbiomac.2019.11.118] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
Nucleolin or C23, is one of the most abundant non-ribosomal phosphoproteins of nucleolus. However, in several cancers, nucleolin is highly expressed both intracellularly and on the cell surface. So, it is considered as a potential target for the diagnosis and cancer therapy. Targeting nucleolin by compounds such as AS1411 aptamer can reduce tumor cell growth. In this regard, interest has increased in nucleolin as a molecular target for overcoming cancer therapy challenges. This review paper addressed recent progresses in nucleolin targeting by the G-rich AS1411 aptamer in the field of cancer therapy mainly over the past three years.
Collapse
Affiliation(s)
- Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Payam Bayat
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehryar Zargari
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Hu D, Pan M, Yu Y, Sun A, Shi K, Qu Y, Qian Z. Application of nanotechnology for enhancing photodynamic therapy via ameliorating, neglecting, or exploiting tumor hypoxia. VIEW 2020. [DOI: 10.1002/viw2.6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- DanRong Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Meng Pan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Yan Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ao Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of HematologyState Key Laboratory of BiotherapyWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, Collaborative Innovation Center for Biotherapy Chengdu Sichuan P. R. China
| |
Collapse
|
33
|
Cui MR, Chen LX, Li XL, Xu JJ, Chen HY. NIR Remote-Controlled "Lock-Unlock" Nanosystem for Imaging Potassium Ions in Living Cells. Anal Chem 2020; 92:4558-4565. [PMID: 32066238 DOI: 10.1021/acs.analchem.9b05820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite great achievements in sensitive and selective detection of important biomolecules in living cells, it is still challenging to develop smart and controllable sensing nanodevices for cellular studies that can be activated at desired time in target sites. To address this issue, we have constructed a remote-controlled "lock-unlock" nanosystem for visual analysis of endogenous potassium ions (K+), which employed a dual-stranded aptamer precursor (DSAP) as recognition molecules, SiO2 based gold nanoshells (AuNS) as nanocarriers, and near-infrared ray (NIR) as the remotely applied stimulus. With the well-designed and activatable DSAP-AuNS, the deficiencies of traditional aptamer-based sensors have been successfully overcome, and the undesired response during transport has been avoided, especially in complex physiological microenvironments. While triggered by NIR, the increased local temperature of AuNS induced the dehybridiztion of DSAP, realized the "lock-unlock" switch of the DSAP-AuNS nanosystem, activated the binding capability of aptamer, and then monitored intracellular K+ via the change of fluorescence signal. This DSAP-AuNS nanosystem not only allows us to visualize endogenous ions in living cells at a desired time but also paves the way for fabricating temporal controllable nanodevices for cellular studies.
Collapse
Affiliation(s)
- Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Li-Xian Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China.,College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
34
|
Cao W, Liu B, Xia F, Duan M, Hong Y, Niu J, Wang L, Liu Y, Li C, Cui D. MnO 2@Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile" for the enhanced photodynamic therapy on lung cancer. NANOSCALE 2020; 12:3090-3102. [PMID: 31965129 DOI: 10.1039/c9nr07947e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The critical issue in nanoscale medicine delivery systems is the targeted efficiency to guarantee the maximum accumulation of nanodrugs in tumors to exert better therapeutic action. In this study, we adopted an active and potent strategy based on mesenchymal stem cells (MSCs) certified with excellent tumor-tropism ability to load and ship MnO2@Ce6 nanoparticles into a tumor site. Notably, under the premise of the negligible cellular toxicity of MnO2@Ce6 on MSCs, its considerable uptake by MSCs enabled this nanoplatform (MnO2@Ce6-MSCs) to distribute increasingly inside the tumor. Briefly, a Ce6 photosensitizer was bound to MnO2 nanospheres by physical adsorption, improving its own stability in blood circulation. Furthermore, the delivered MnO2@Ce6 could modulate the tumor microenvironment (TME) by high sensitivity to excess hydrogen protons (H+) and H2O2. Thus, O2 generated by these reactions served as an abundant source for 1O2 conversion under a 633 nm laser exposure, which overcame the crucial bottleneck of the unfavorable hypoxia condition in TME for photodynamic therapy (PDT). In addition, MnO2 decomposed into Mn2+, which was represented by high T1 relaxivity in magnetic resonance imaging (MRI). The Mn2+ was finally removed rapidly from the body by liver metabolism and kidney filtration. These results endowed the original nanoplatform with striking potential for MSC-guided, Ce6-converted, MRI-monitored PDT for further innovation of a clinical cancer diagnosis-treatment agent.
Collapse
Affiliation(s)
- Wen Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hu X, Lu Y, Dong C, Zhao W, Wu X, Zhou L, Chen L, Yao T, Shi S. A Ru
II
Polypyridyl Alkyne Complex Based Metal–Organic Frameworks for Combined Photodynamic/Photothermal/Chemotherapy. Chemistry 2020; 26:1668-1675. [DOI: 10.1002/chem.201904704] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaochun Hu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Yonglin Lu
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Wenrong Zhao
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Xuewen Wu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Lulu Zhou
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Lv Chen
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| | - Tianming Yao
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
| | - Shuo Shi
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Road Shanghai 200092 P.R. China
- Breast Cancer Center, Shanghai East HospitalTongji University Shanghai 200120 P.R. China
| |
Collapse
|
36
|
Zhou W, Hu K, Kwee S, Tang L, Wang Z, Xia J, Li X. Gold Nanoparticle Aggregation-Induced Quantitative Photothermal Biosensing Using a Thermometer: A Simple and Universal Biosensing Platform. Anal Chem 2020; 92:2739-2747. [PMID: 31977184 DOI: 10.1021/acs.analchem.9b04996] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Kaiqiang Hu
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Sharon Kwee
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Liang Tang
- Department of Biomedical and Chemical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
37
|
Qu B, Li X, Zhang X, Li W, Zhang R. PVP-coated Sb2Se3 nanorods as nanotheranostic agents for photoacoustic imaging and photothermal therapy in NIR-I bio-windows. RSC Adv 2020; 10:15221-15227. [PMID: 35495440 PMCID: PMC9052336 DOI: 10.1039/d0ra01638a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Antimony selenide (Sb2Se3) as a simple, low toxicity, low-cost p-type semiconductor material with broad absorbance ranging from the UV to the NIR region has many potential applications in photovoltaic, thermoelectric, and phase-change memory devices. Owing to these excellent properties, Sb2Se3 nanorods were firstly synthesized with triphenylantimony and dibenzyldiselenide under solvothermal conditions. In order to enhance the biocompatibility of the Sb2Se3 nanorods, polyvinylpyrrolidone (PVP) was coated onto the surface of the Sb2Se3 nanorods to form PVP-coated Sb2Se3 nanorods. The cell viability of PVP-coated Sb2Se3 nanorods toward Hep-2 cells was assessed for 24 h using a Cell Counting Kit-8 (CCK-8) assay. The results showed that Hep-2 cells treated with PVP-coated Sb2Se3 nanorods were alive at a concentration as high as 100 μg mL−1 in the absence of NIR irradiation. In vivo assessment confirmed that PVP-coated Sb2Se3 nanorods exhibited excellent photoacoustic imaging and PTT performance, which yielded complete ablation of tumors after laser irradiation (808 nm or 980 nm) in the NIR-I bio-window. Herein we reported a biocompatible PVP-coated Sb2Se3 nanorods as PTT nanotheranostic agent, which is responsive to the light (808 and 980 nm) in NIR-I bio-windows and effective for photoacoustic imaging and photothermal destruction of cancer cell.![]()
Collapse
Affiliation(s)
- Botao Qu
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Xiaoyan Li
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Xiaomin Zhang
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| | - Weihua Li
- Department of Radiology
- The First Affiliated Hospital of Shenzhen University
- Shenzhen Second People's Hospital
- Shenzhen 518035
- China
| | - Ruiping Zhang
- School of Basic Medical Sciences
- Shanxi Medical University
- Imaging College of Shanxi Medical University
- Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University
- Taiyuan 030001
| |
Collapse
|
38
|
Abstract
Recent achievements of MnO2-based nanosystems for various cancer therapies are comprehensively reviewed.
Collapse
Affiliation(s)
- Jia Wen
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province
- College of Pharmaceutical Science
- Hebei University
- Baoding 071002
- China
| | - Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Shiguo Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization
- Ministry of Education
- School of Pharmacy
- Shihezi University
- Shihezi 832002
| |
Collapse
|
39
|
Xiang Z, Qi Y, Lu Y, Hu Z, Wang X, Jia W, Hu J, Ji J, Lu W. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: magnetic-triggered synergistic hyperthermia and chemotherapy. J Mater Chem B 2020; 8:8671-8683. [DOI: 10.1039/d0tb01021a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Smart Fe3O4@C-PVP@DOX nanomedical platforms hold great potential application in the precise treatments of clinical cancer.
Collapse
Affiliation(s)
- Zhen Xiang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yiyao Qi
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Yusheng Lu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Zhenrong Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Xiao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Wenwen Jia
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology
- National Clinical Research Center of Stomatology
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Affiliated Lishui Hospital of Zhejiang University
- Lishui
- China
| | - Wei Lu
- Institute for Regenerative Medicine, Shanghai East Hospital
- Shanghai Key Lab of D&A for Metal Functional Materials
- School of Life Scxience and Technology
- School of Materials Science and Engineering
- Tongji University
| |
Collapse
|
40
|
Shi M, Wang S, Zheng S, Hou P, Dong L, He M, Wu C, Zhang X, Zuo F, Xu K, Li J. Activatable MRI-monitoring gene delivery for the theranostic of renal carcinoma. Colloids Surf B Biointerfaces 2020; 185:110625. [DOI: 10.1016/j.colsurfb.2019.110625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 01/21/2023]
|
41
|
Kumari R, Sunil D, Ningthoujam RS. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J Control Release 2019; 319:135-156. [PMID: 31881315 DOI: 10.1016/j.jconrel.2019.12.041] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
Hypoxia is a salient feature observed in most solid malignancies that holds a pivotal role in angiogenesis, metastasis and resistance to conventional cancer therapeutic approaches, and thus enables cancer progression. However, the typical characteristics of hypoxic cells such as low oxygen levels and highly bio-reductive environment can offer stimuli-responsive drug release to aid in tumor-specific chemo, radio, photodyanamic and sonodynamic therapies. This approach based on targeting the poorly oxygenated tumor habitats offers the prospective to overcome the difficulties that arises due to heterogenic nature of tumor and could be possibly used in the design of diagnostic as well as therapeutic nanocarriers for targeting various types of solid cancers. Consequently, hypoxia triggered nanoparticle based drug delivery systems is a rapidly progressing research area in developing effective strategies to combat drug-resistance in solid tumors. The present review presents the recent advances in the development of hypoxia-responsive nanovehicles for drug delivery to heterogeneous tumors. The initial sections of the article provides insights into the development of hypoxia in growing cancer and its role in disease progression. The current limitations and the future prospective of hypoxia-stimulated nanomachines for cancer treatment are also discussed.
Collapse
Affiliation(s)
- Rashmi Kumari
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India.
| | | |
Collapse
|
42
|
Integration of cascade delivery and tumor hypoxia modulating capacities in core-releasable satellite nanovehicles to enhance tumor chemotherapy. Biomaterials 2019; 223:119465. [DOI: 10.1016/j.biomaterials.2019.119465] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022]
|
43
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine 2019; 14:8321-8344. [PMID: 31695370 PMCID: PMC6814316 DOI: 10.2147/ijn.s218085] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Contrast agents (CAs) play a crucial role in high-quality magnetic resonance imaging (MRI) applications. At present, as a result of the Gd-based CAs which are associated with renal fibrosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide nanoparticles, Mn-based CAs which have a good biocompatibility and bright images are considered ideal for MRI. In addition, manganese oxide nanoparticles (MONs, such as MnO, MnO2, Mn3O4, and MnOx) have attracted attention as T1-weighted magnetic resonance CAs due to the short circulation time of Mn(II) ion chelate and the size-controlled circulation time of colloidal nanoparticles. In this review, recent advances in the use of MONs as MRI contrast agents for tumor detection and diagnosis are reported, as are the advances in in vivo toxicity, distribution and tumor microenvironment-responsive enhanced tumor chemotherapy and radiotherapy as well as photothermal and photodynamic therapies.
Collapse
Affiliation(s)
- Xiaoxia Cai
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
45
|
Jing X, Xu Y, Liu D, Wu Y, Zhou N, Wang D, Yan K, Meng L. Intelligent nanoflowers: a full tumor microenvironment-responsive multimodal cancer theranostic nanoplatform. NANOSCALE 2019; 11:15508-15518. [PMID: 31393496 DOI: 10.1039/c9nr04768a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the collaborative therapy of chemotherapy (CT) and photodynamic therapy (PDT) is much more efficient for tumor treatment than monotherapies, premature leakage of drugs from nanocarriers and hypoxia in the tumor microenvironment (TME) result in systemic toxicity and suboptimal therapy efficiency. To overcome these limitations, we developed an intelligent nanoflower composite (termed FHCPC@MnO2) by coating functionalized polyphosphazene on superparamagnetic Fe3O4 nanoclusters and then growing MnO2 nanosheets as an outer shell. The FHCPC@MnO2 nanoflowers with multistage H2O2/pH/GSH-responsive properties could fully exploit TME characteristics, including supernormal glutathione (GSH) levels, low pH and high H2O2, to realize the specific release of drugs in tumors and maximum synergetic therapeutic effects. The MnO2 nanosheets can elevate O2 concentration by catalytic decomposition of H2O2 and can be simultaneously reduced to Mn2+ by overexpressed GSH in the acidic TME. Meanwhile, the inner polyphosphazene containing (bis-(4-hydroxyphenyl)-disulfide) is GSH- and pH-sensitively biodegradable to release the anticancer drug curcumin (CUR) and photosensitizer chlorin e6 (Ce6) in the TME. Therefore, the "triple-responsive" and synergetic strategy simultaneously endows the nanoflowers with specific drug release, relieving hypoxia and the antioxidant capability of the tumor and achieving significant optimization of CT and PDT. In addition, the resulting Mn2+ ions and Fe3O4 core enable in vivo T1/T2 magnetic resonance imaging (MRI), while the released Ce6 can simultaneously provide a fluorescence imaging (FL) function. Unsurprisingly, the intelligent nanoflowers exhibited remarkable multimodal theranostic performance both in vitro and in vivo, suggesting their great potential for precision medicine.
Collapse
Affiliation(s)
- Xunan Jing
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yanzi Xu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Youshen Wu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
46
|
Fu Y, Li X, Chen H, Wang Z, Yang W, Zhang H. CXC Chemokine Receptor 4 Antagonist Functionalized Renal Clearable Manganese-Doped Iron Oxide Nanoparticles for Active-Tumor-Targeting Magnetic Resonance Imaging-Guided Bio-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2019; 2:3613-3621. [PMID: 35030748 DOI: 10.1021/acsabm.9b00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yu Fu
- College of Chemistry, Jilin University, Changchun 130021, P. R. China
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Xiaodong Li
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wensheng Yang
- College of Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Huimao Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
47
|
Yang XJ, Li XL, Chen HY, Xu JJ. NIR-Activated Spatiotemporally Controllable Nanoagent for Achieving Synergistic Gene-Chemo-Photothermal Therapy in Tumor Ablation. ACS APPLIED BIO MATERIALS 2019; 2:2994-3001. [DOI: 10.1021/acsabm.9b00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue-Jiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
48
|
Yang G, Tian J, Chen C, Jiang D, Xue Y, Wang C, Gao Y, Zhang W. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem Sci 2019; 10:5766-5772. [PMID: 31293763 PMCID: PMC6568044 DOI: 10.1039/c9sc00985j] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The efficacy of photodynamic therapy and chemotherapy is largely limited by oxygen deficiency in the hypoxic tumor microenvironment. To solve these problems, we fabricated a novel NIR-responsive nanosystem which could co-deliver oxygen and anticancer drug DOX. An oxygen self-sufficient amphiphile (F-IR780-PEG) was first synthesized and subsequently utilized to load anticancer drug DOX to form nanoparticles (F/DOX nanoparticles). Due to the high oxygen capacity of such nanoparticles, the hypoxic tumor microenvironment was greatly modulated after these nanoparticles reached the tumor region, and the results revealed that hypoxia-inducible factor α (HIF-1α) was down-regulated and the expression of P-glycoprotein (P-gp) was then reduced, which were in favor of chemotherapy. Under light irradiation at 808 nm, IR780 could efficiently produce singlet oxygen to damage cancer cells by photodynamic therapy (PDT). Simultaneously, the IR780 linkage could be cleaved by singlet oxygen generated by itself and resulted in DOX release, which further caused cell damage by chemotherapy. With the combination of PDT and chemotherapy, F/DOX nanoparticles showed remarkable therapeutic efficacy under in vitro and in vivo conditions. Furthermore, the F/DOX nanoparticles are favorable for imaging-guided tumor therapy due to the inherent fluorescence properties of IR780. We thus believe that the synergistic treatment described here leads to an ideal therapeutic approach to hypoxic tumors.
Collapse
Affiliation(s)
- Guoliang Yang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering Center , East China University of Science and Technology , China
| | - Dawei Jiang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yudong Xue
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Chaochao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry , Key Laboratory for Specially Functional Polymeric Materials and Related Technology of the Ministry of Education , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China .
| |
Collapse
|
49
|
Yang C, Yu H, Gao Y, Guo W, Li Z, Chen Y, Pan Q, Ren M, Han X, Guo C. Surface-engineered vanadium nitride nanosheets for an imaging-guided photothermal/photodynamic platform of cancer treatment. NANOSCALE 2019; 11:1968-1977. [PMID: 30644942 DOI: 10.1039/c8nr08269c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Of the many strategies for precise tumor treatment, near-infrared (NIR) light-activated "one-for-all" theranostic modality with real-time diagnosis and therapy has attracted extensive attention from researchers. Herein, a brand-new theranostic nanoplatform was established on versatile vanadium nitride (VN) nanosheets, which show significant NIR optical absorption, and resultant photothermal effect and reactive oxygen species activity under NIR excitation, thereby realizing the synergistic action of photothermal/photodynamic co-therapy. As expected, systematic in vitro and in vivo antitumor evaluations demonstrated efficient cancer cell killing and solid tumor removal without recurrence. Meanwhile, the surface modification of VN nanosheets with poly(allylamine hydrochloride) and bovine serum albumin enhanced the biocompatibility of VN and made it more suitable for in vivo delivery. Moreover, VN has been ascertained as a potential photoacoustic imaging contrast for in vivo tumor depiction. Thus, this work highlights the potential of VN nanosheets as a single-component theranostic nanoplatform.
Collapse
Affiliation(s)
- Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin J, Xin P, An L, Xu Y, Tao C, Tian Q, Zhou Z, Hu B, Yang S. Fe 3O 4-ZIF-8 assemblies as pH and glutathione responsive T 2-T 1 switching magnetic resonance imaging contrast agent for sensitive tumor imaging in vivo. Chem Commun (Camb) 2019; 55:478-481. [PMID: 30547169 DOI: 10.1039/c8cc08943d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A small Fe3O4 nanoparticles-based T1 contrast agent was assembled into a pH- and glutathione-responsive T2-T1 switching contrast agent, Fe3O4-ZIF-8. In vivo T1-weighted images of mice showed that Fe3O4-ZIF-8 displayed darkening contrast enhancement for liver sites, while darkening to brightening contrast enhancement at tumor sites, giving large inverse contrast for distinguishing the normal and tumor tissues.
Collapse
Affiliation(s)
- Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Normal University, Shanghai 200234, China.
| | | | | | | | | | | | | | | | | |
Collapse
|