1
|
Singh S, Saini R, Joshi A, Singh N, Singh RP. Desymmetric homologating annulation to access chiral pentafulvenes and their application in bioimaging. Nat Commun 2024; 15:2101. [PMID: 38453892 PMCID: PMC10920648 DOI: 10.1038/s41467-024-45346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
The architectural design of polycyclic/multisubstituted pentafulvenes has demonstrated great potential for the development of electrochromic materials and biologically active motifs. Unfortunately, the enantioselective construction of such distinctive cores with all carbon quaternary chiral centers has remained untouched to date. Herein, we disclose an enantioselective homologating annulation of cyclopent-4-ene-dione with 3-cyano-4-methylcoumarins through L-tert-leucine derived thiourea catalysis, affording a wide range of enantioenriched polycyclic multisubstituted embedded aminopentafulvenes with excellent stereocontrol (up to 99:1 er) and chemical yields up to 87%. A detailed photophysical and cytotoxicity analysis of racemic and chiral homologated adducts unveils the exceptional behavior of chiral adducts over their racemic analogs, highlighting the importance of stereoselectivity of the developed scaffolds. A cellular uptake experiment in a mammalian fibroblast cell line confirmed the potential of developed polycyclic aminopentafulvene cores as a highly promising labeling dye that can be utilized for bioimaging without any adverse effects.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ravi Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Akshay Joshi
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
2
|
Tian K, Chang X, Xiao L, Dong XQ, Wang CJ. Stereodivergent synthesis of α-fluoro α-azaaryl γ-butyrolactones via cooperative copper and iridium catalysis. FUNDAMENTAL RESEARCH 2024; 4:77-85. [PMID: 38933830 PMCID: PMC11197661 DOI: 10.1016/j.fmre.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022] Open
Abstract
The development of stereodivergent synthetic methods to access all four stereoisomers of biologically important α-fluoro γ-butyrolactones containing vicinal stereocenters is of great importance and poses a formidable challenge owing to ring strain and steric hindrance. Herein, a novel asymmetric [3+2] annulation of α-fluoro α-azaaryl acetates with vinylethylene carbonate was successfully developed through Cu/Ir-catalyzed cascade allylic alkylation/lactonization, affording a variety of enantioenriched α-fluoro γ-butyrolactones bearing vicinal stereogenic centers with high reaction efficiency and excellent levels of both stereoselectivity and regioselectivity (up to 98% yield, generally >20:1 dr and >99% ee). Notably, all four stereoisomers of these pharmaceutically valuable molecules could be accessed individually via simple permutations of two enantiomeric catalysts. In addition, other azaaryl acetates bearing α-methyl, α-chlorine or α-phenyl group were tolerated well in this transformation. Reaction mechanistic investigations were conducted to explore the process of this bimetallic catalysis based on the results of reaction intermediates, isotopic labelling experiments, and kinetic studies.
Collapse
Affiliation(s)
- Kui Tian
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- Suzhou Institute of Wuhan University, Suzhou 215123, China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 230021, China
| |
Collapse
|
3
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
4
|
Chandra Mallojjala S, Sarkar R, Karugu RW, Manna MS, Ray S, Mukherjee S, Hirschi JS. Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp 2)–H Alkylation Using Nitroalkanes as Alkylating Agents. J Am Chem Soc 2022; 144:17399-17406. [PMID: 36108139 DOI: 10.1021/jacs.2c02941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Experimental 13C kinetic isotope effects (KIEs) and density functional theory (DFT) calculations are used to evaluate the mechanism and origin of enantioselectivity in the formal C(sp2)-H alkylative desymmetrization of cyclopentene-1,3-diones using nitroalkanes as the alkylating agent. An unusual combination of an inverse (∼0.980) and a normal (∼1.033) KIE is observed on the bond-forming carbon atoms of the cyclopentene-1,3-dione and nitroalkane, respectively. These data provide strong support for a mechanism involving reversible carbon-carbon bond formation followed by rate- and enantioselectivity-determining nitro group elimination. The theoretical free-energy profile and the predicted KIEs indicate that this elimination event occurs via an E1cB pathway. The origin of remote stereocontrol is evaluated by distortion-interaction and SAPT0 analyses of the E1cB transition states leading to both enantiomers.
Collapse
Affiliation(s)
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rachael W. Karugu
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Madhu Sudan Manna
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sayan Ray
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jennifer S. Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| |
Collapse
|
5
|
Bhaskararao B, Rotella ME, Kim DY, Kee JM, Kim KS, Kozlowski MC. Ir and NHC Dual Chiral Synergetic Catalysis: Mechanism and Stereoselectivity in γ-Butyrolactone Formation. J Am Chem Soc 2022; 144:16171-16183. [PMID: 36006026 PMCID: PMC9620864 DOI: 10.1021/jacs.2c07376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cooperative dual catalysis is a powerful strategy for achieving unique reactivity by combining catalysts with orthogonal modes of action. This approach allows for independent control of the absolute and relative stereochemistry of the product. Despite its potential utility, the combination of N-heterocyclic carbene (NHC) organocatalysis and transition metal catalysis has remained a formidable challenge as NHCs readily coordinate metal centers. This characteristic also makes it difficult to rationalize or predict the stereochemical outcomes of these reactions. Herein, we use quantum mechanical calculations to investigate formation of γ-butyrolactones from aldehydes and allyl cyclic carbonates by means of an NHC organocatalyst and an iridium catalyst. Stereoconvergent activation of the racemic allyl cyclic carbonate forms an Ir-π-allyl intermediate and activation of an unsaturated aldehyde forms an NHC enolate, the latter of which is rate-limiting. Union of the two fragments leads to stereodetermining C-C bond formation and ultimately ring closure to generate the product lactone. Notably, CO2 loss occurs after formation of the C-C bond and Et3NH+ plays a key role in stabilizing carboxylate intermediates and in facilitating proton transfer to form the NHC enolate. The computed pathways agree with the experimental findings in terms of the absolute configuration, the enantiomer excess, and the different diastereomers seen with the (R)- and (S)-spiro-phosphoramidite combined with the NHC catalyst. Calculations reveal the lowest energy pathway includes both an NHC ligand and a phosphoramidite ligand on the iridium center. However, the stereochemical features of this Ir-bound NHC were found to not contribute to the selectivity of the process.
Collapse
Affiliation(s)
- Bangaru Bhaskararao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Madeline E. Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dong Yeon Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kwang Soo Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
7
|
Chin YP, See NW, Jenkins ID, Krenske EH. Computational discoveries of reaction mechanisms: recent highlights and emerging challenges. Org Biomol Chem 2022; 20:2028-2042. [PMID: 35148363 DOI: 10.1039/d1ob02139g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review examines some of the notable advances and trends that have shaped the field of computational elucidation of organic reaction mechanisms over the last 10-15 years. It highlights the types of mechanistic problems that have recently become possible to study and summarizes the methodological developments that have permitted these new advances. Case studies are taken from three representative areas of organic chemistry-asymmetric catalysis, glycosylation reactions, and single electron transfer reactions-which illustrate themes common to the broader field. These include the trend towards modelling systems that are increasingly complex (both structurally and mechanistically), the growing appreciation of the mechanistic roles of non-covalent interactions, and the increasing ability to explore dynamical features of reaction mechanisms. Some interesting new challenges that have emerged in the field are identified.
Collapse
Affiliation(s)
- Yuk Ping Chin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Nicholas W See
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ian D Jenkins
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Tribedi S, Sunoj RB. Molecular insights into chirality transfer from double axially chiral phosphoric acid in a synergistic enantioselective intramolecular amination. Chem Sci 2022; 13:1323-1334. [PMID: 35222916 PMCID: PMC8809490 DOI: 10.1039/d1sc05749a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
In the most general practice of asymmetric catalysis, a chiral catalyst, typically bearing a center or an axis of chirality, is employed as the chiral source for imparting enantiocontrol over the developing product. Given the current interest toward optically pure compounds, various forms of chiral induction enabled by diverse chiral sources as well as the use of multiple catalysts under one-pot conditions have been in focus. In one such promising development, an achiral N-sulfonamide protected 1,6-amino allyl alcohol (NaphSO2NHCH2C(Ph)2CH2CH
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CHCH2OH) was subjected to Tsuji–Trost activation and an intramolecular amination to form important chiral pyrrolidine frameworks. A dual catalytic system comprising Pd(PPh3)4 and DAPCy (β-cyclohexyl substituted double axially chiral phosphoric acid derived from two homocoupled BINOL backbones with a dynamic central chiral axis) under mild conditions was reported to offer quantitative conversion with an ee of 95%. Here, we provide molecular insights into the origin of chiral induction by DAPCy, as obtained through a comprehensive density functional theory (SMD(toluene)/B3LYP-D3/6-31G**,Pd(SDD)) investigation. Two key steps in the mechanism are identified to involve a cooperative mode of activation of the Pd-bound allyl alcohol in the form of a Pd-π-allyl moiety at one end of the substrate, followed by an intramolecular nucleophilic addition of N-sulfonamide from the other end to yield a pyrrolidine derivative bearing an α-vinyl stereogenic center. (S,R,S)-DAPCy is found to steer the dehydroxylation to yield a Pd-π-allyl intermediate with a suitably poised si prochiral face for the nucleophilic addition. In the enantiocontrolled (as well as the turn-over determining step) nucleophilic addition, the chiral catalyst is identified to serve as a chiral phosphate counterion. The chiral induction is facilitated by a series of N–H⋯O, C–H⋯O, C–H⋯π, lone pair (lp)⋯π, O–H⋯O, O–H⋯π, and π⋯π noncovalent interactions, which is noted as more effective in the lower energy C–N bond formation transition state through the si prochiral face of the Pd-π-allyl moiety. These insights into the novel dynamic axially double chiral catalyst could be valuable toward exploiting such modes of stereoinduction. The origin of enantiocontrol in an intramolecular amination involving Pd(PPh3)4 and a double axially chiral phosphoric acid (DAPCy) dual catalytic system is traced to a more effective series of noncovalent interactions in the lower energy C–N bond formation transition state.![]()
Collapse
Affiliation(s)
- Soumi Tribedi
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
9
|
Li B, Xu H, Dang Y, Houk KN. Dispersion and Steric Effects on Enantio-/Diastereoselectivities in Synergistic Dual Transition-Metal Catalysis. J Am Chem Soc 2022; 144:1971-1985. [DOI: 10.1021/jacs.1c12664] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Rozsar D, Formica M, Yamazaki K, Hamlin TA, Dixon DJ. Bifunctional Iminophosphorane-Catalyzed Enantioselective Sulfa-Michael Addition to Unactivated α,β-Unsaturated Amides. J Am Chem Soc 2022; 144:1006-1015. [PMID: 34990142 PMCID: PMC8793149 DOI: 10.1021/jacs.1c11898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The
first metal-free catalytic intermolecular enantioselective
Michael addition to unactivated α,β-unsaturated amides
is described. Consistently high enantiomeric excesses and yields were
obtained over a wide range of alkyl thiol pronucleophiles and electrophiles
under mild reaction conditions, enabled by a novel squaramide-based
bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0
mol %) were achieved on a decagram scale, demonstrating the scalability
of the reaction. Computational analysis revealed the origin of the
high enantiofacial selectivity via analysis of relevant transition
structures and provided substantial support for specific noncovalent
activation of the carbonyl group of the α,β-unsaturated
amide by the catalyst.
Collapse
Affiliation(s)
- Daniel Rozsar
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Michele Formica
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.,Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| |
Collapse
|
11
|
Parella R, Jakkampudi S, Bora P, Sakkani N, Zhao JCG. Domino Michael/Michael reaction catalyzed by switchable modularly designed organocatalysts. Org Biomol Chem 2021; 20:163-172. [PMID: 34877959 DOI: 10.1039/d1ob01991k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The domino Michael/Michael reaction between (E)-7-aryl-7-oxohept-5-enals and trans-cinnamaldehydes was investigated by using modularly designed organocatalysts (MDOs). It was found that both the enamine and iminium catalytic modes of the MDOs are switchable and can be individually switched on and off by using appropriate combinations of the precatalyst modules and the reaction conditions. When both the enamine and iminium catalysis modes of the MDOs are switched on, the desired domino reaction products can be obtained in good yields and stereoselectivities under optimized conditions.
Collapse
Affiliation(s)
- Ramarao Parella
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Pranjal Bora
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-069, USA.
| |
Collapse
|
12
|
Chin YP, Krenske EH. Nazarov Cyclizations Catalyzed by BINOL Phosphoric Acid Derivatives: Quantum Chemistry Struggles To Predict the Enantioselectivity. J Org Chem 2021; 87:1710-1722. [PMID: 34634910 DOI: 10.1021/acs.joc.1c01823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Quantum chemical calculations have successfully predicted the stereoselectivities of many BINOL phosphoric acid catalyzed reactions over the past 10-15 years. Herein we report a contrasting example: a reaction for which standard quantum chemistry techniques have proven unexpectedly ineffective at explaining the stereoselectivity. The Nazarov cyclizations of a divinyl ketone catalyzed by a BINOL phosphoric acid or H8-BINOL dithiophosphoric acid were studied with a conventional contemporary quantum chemical approach, consisting of transition state optimizations with B3LYP-D3(BJ) and single-point calculations with several functionals in implicit solvent. Unexpectedly, different functionals gave widely different predictions of the level of enantioselectivity and were unable even to agree on which enantiomer of the product would predominate. Molecular dynamics simulations with the OPLS-AA force field provided evidence that the transition state geometries optimized with DFT in the gas phase or in implicit solvent are not good representations of the true transition states of these reactions in solution. One possible reason for this, which may also explain the failure of quantum chemical techniques to reliably predict the enantioselectivity, is the fact that the transition states contain ion pairs which are not highly organized and do not contain any strongly directional noncovalent interactions between the substrate and the catalyst.
Collapse
Affiliation(s)
- Yuk Ping Chin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Kaur J, Preet Kaur B, Islam N, Chauhan P, Singh Chimni S. Stereoselective Mannich Reaction of
α
‐Acetoxy‐
β
‐keto Esters with Isatin Imine: An Efficient Access to Vicinal Tetra‐Substituted Stereocenters. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasneet Kaur
- Department of Chemistry Khalsa College Amritsar 143001 India
| | - Banni Preet Kaur
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry Guru Nanak Dev University Amritsar 143005 India
| | - Nasarul Islam
- Department of Chemistry, Govt. Degree College Bandipora 193502 India
| | - Pankaj Chauhan
- Department of Chemistry Indian Institute of Technology Jammu, Jagti PO Nagrota, NH-44 Jammu 181 221 India
| | - Swapandeep Singh Chimni
- Department of Chemistry, U.G.C. Centre of Advance Studies in Chemistry Guru Nanak Dev University Amritsar 143005 India
| |
Collapse
|
14
|
Bora P, Jakkampudi S, Parella R, Sakkani N, Dai Q, Bihani M, Arman HD, Zhao JCG. Diastereodivergent synthesis of 4-oxocyclohexanecarbaldehydes by using the modularly designed organocatalysts upon switching on their iminium catalysis. Chem Commun (Camb) 2021; 57:5334-5337. [PMID: 33928958 DOI: 10.1039/d1cc01020d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cinchona thiourea moiety in the self-assembled modularly designed organocatalysts (MDOs) switches off the iminium catalysis of these catalysts. In this study, it was found that the inhibited iminium catalysis could be switched on by using an appropriate weak acid and that, once the iminium catalysis was switched on, these catalysts could be applied for the highly stereoselective and diastereodivergent synthesis of 4-oxocyclohexanecarbaldehydes via a domino reaction between ketones and α,β-unsaturated aldehydes.
Collapse
Affiliation(s)
- Pranjal Bora
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Ramarao Parella
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Nagaraju Sakkani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Qipu Dai
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Manisha Bihani
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA.
| |
Collapse
|
15
|
Zhang JL, Liu JY, Xu GQ, Luo YC, Lu H, Tan CY, Hu XQ, Xu PF. One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Org Lett 2021; 23:3287-3293. [DOI: 10.1021/acs.orglett.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Bifunctional C2-symmetric ionic liquid-supported (S)-proline as a recyclable organocatalyst for Mannich reactions in neat condition. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Dangat Y, Popli S, Sunoj RB. Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions. J Am Chem Soc 2020; 142:17079-17092. [DOI: 10.1021/jacs.0c06942] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuvraj Dangat
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sahil Popli
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
18
|
Ling T, Hadi V, Bollinger J, Rivas F. Identification of rapid access to polycyclic systems via a base-catalyzed cascade cyclization reaction and their biological evaluation. Bioorg Chem 2020; 99:103846. [PMID: 32334195 PMCID: PMC7329093 DOI: 10.1016/j.bioorg.2020.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022]
Abstract
A base-mediated cascade reaction between malonate esters and acrolein was developed to access complex polycyclic systems. This novel tandem reaction enables the simultaneous generation of up to seven new bonds and at least three new stereogenic centers. Mechanistic studies indicate a series of nucleophilic 1,4 and 1,6 Michael addition reactions occur, followed by an aldol condensation reaction, culminating in the formation of three fused rings. The compounds were characterized by NMR studies and the stereochemistry was confirmed by X-ray analysis. The ability to generate multigram quantities of such complex molecular scaffolds renders the method promising for medicinal chemistry campaigns. Herein, we also demonstrate that the lead compounds display promising anti-proliferative activities against human cancer cell models.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Victor Hadi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - John Bollinger
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
19
|
Changotra A, Bhaskararao B, Hadad CM, Sunoj RB. Insights on Absolute and Relative Stereocontrol in Stereodivergent Cooperative Catalysis. J Am Chem Soc 2020; 142:9612-9624. [DOI: 10.1021/jacs.9b13962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bangaru Bhaskararao
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Christopher M. Hadad
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Raghavan B. Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
20
|
Abstract
Since the beginning of the millennium, organocatalysis has been gaining a predominant role in asymmetric synthesis and it is, nowadays, a foundation of catalysis. Synergistic catalysis, combining two or more different catalytic cycles acting in concert, exploits the vast knowledge acquired in organocatalysis and other fields to perform reactions that would be otherwise impossible. Merging organocatalysis with photo-, metallo- and organocatalysis itself, researchers have ingeniously devised a range of activations. This feature review, focusing on selected synergistic catalytic approaches, aims to provide a flavor of the creativity and innovation in the area, showing ground-breaking examples of organocatalysts, such as proline derivatives, hydrogen bond-mediated, Cinchona alkaloids or phosphoric acids catalysts, which work cooperatively with different catalytic partners.
Collapse
|
21
|
Castro-Alvarez A, Carneros H, Calafat J, Costa AM, Marco C, Vilarrasa J. NMR and Computational Studies on the Reactions of Enamines with Nitroalkenes That May Pass through Cyclobutanes. ACS OMEGA 2019; 4:18167-18194. [PMID: 31720519 PMCID: PMC6844152 DOI: 10.1021/acsomega.9b02074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The addition of aldehyde enamines to nitroalkenes affords cyclobutanes in all solvents, with all of the pyrrolidine and proline derivatives tested by us and with all of the substrates we have examined. Depending on the temperature, concentration of water, solvent polarity, and other factors, the opening and hydrolysis of such a four-membered ring may take place rapidly or last for several days, producing the final Michael-like adducts (4-nitrobutanals). Thirteen new cyclobutanes have now been characterized by NMR spectroscopy. As could be expected, s-trans-enamine conformers give rise to all-trans-(4S)-4-nitrocyclobutylpyrrolidines, while s-cis-enamine conformers afford all-trans-(4R)-4-nitrocyclobutylpyrrolidines. These four-membered rings can isomerize to adduct enamines, which should be hydrolyzed via their iminium ions. MP2 and M06-2X calculations predict that one iminium ion is more stable than the other iminium species, so that protonation of the adduct enamines can be quite stereoselective; in the presence of water, the so-called syn adducts (e.g., OCH-*CHR-*CHPh-CH2NO2, with R and Ph syn) eventually become the major products. Why one syn adduct is obtained with aldehydes, whereas cyclic ketones (the predicted ring-fused cyclobutanes of which isomerize to their enamines more easily) produce the other syn adduct, is also explained by means of molecular orbital calculations. Nitro-Michael reactions of aldehyde enamines that "stop" at the nitrocyclobutane stage and final enamine stage do not work catalytically, as known, but those of cyclic ketone enamines that do not work stop at the final enamine stage (if their hydrolysis to the corresponding nitroethylketones is less favorable than expected). These and other facts are accounted for, and the proposals of the groups led by Seebach and Hayashi, Blackmond, and Pihko and Papai are reconciled.
Collapse
|
22
|
An efficient and eco-friendly method for the thiol-Michael addition in aqueous solutions using amino acid ionic liquids (AAILs) as organocatalysts. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A series of amino-acid based ionic liquids (Bmim[AA]s) have been synthesized and evaluated as catalysts, in aqueous solution. The results of a kinetic study of the thiol-Michael reaction of L-Cysteine with trans-β-nitrostyrene demonstrated the advantages of using (Bmim[AA]s) as organocatalysts. The benefits include high rate constants; mild reaction conditions; and, a reusable catalyst, which leads to a simple and efficient method for these important kinds of reactions.
Collapse
|
23
|
Jakkampudi S, Parella R, Arman HD, Zhao JCG. Diastereodivergent Synthesis of Hexahydro-6H-benzo[c]chromen-6-one Derivatives Catalyzed by Modularly Designed Organocatalysts. Chemistry 2019; 25:7515-7520. [PMID: 30895663 PMCID: PMC6548622 DOI: 10.1002/chem.201806447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 11/09/2022]
Abstract
The diastereodivergent synthesis of hexahydro-6H-benzo[c]chromen-6-one derivatives with good to high diastereoselectivities (up to 98:2 d.r.) and enantioselectivities (up to >99 % ee) has been achieved by using a domino Michael/Michael/hemiacetalization reaction between trans-2-hydroxy-β-nitrostyrenes and trans-7-oxo-5-heptenals followed by oxidation. With use of appropriate modularly designed organocatalysts (MDOs) that are self-assembled in situ from amino acid derivatives and cinchona alkaloid derivatives, two different diastereomers of the desired hexahydro-6H-benzo[c]chromen-6-ones are obtained from the same substrates.
Collapse
Affiliation(s)
- Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Ramarao Parella
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| | - John C-G Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, 78249-0698, USA
| |
Collapse
|
24
|
Maji R, Ugale H, Wheeler SE. Understanding the Reactivity and Selectivity of Fluxional Chiral DMAP-Catalyzed Kinetic Resolutions of Axially Chiral Biaryls. Chemistry 2019; 25:4452-4459. [PMID: 30657217 DOI: 10.1002/chem.201806068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Indexed: 12/17/2022]
Abstract
Fluxional chiral DMAP-catalyzed kinetic resolutions of axially chiral biaryls were examined using density functional theory. Computational analyses lead to a revised understanding of this reaction in which the interplay of numerous non-covalent interactions control the conformation and flexibility of the active catalyst, the preferred mechanism, and the stereoselectivity. Notably, while the DMAP catalyst itself is confirmed to be highly fluxional, electrostatically driven π⋅⋅⋅π+ interactions render the active, acylated form of the catalyst highly rigid, explaining its pronounced stereoselectivity.
Collapse
Affiliation(s)
- Rajat Maji
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Heena Ugale
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA
| | - Steven E Wheeler
- Department of Chemistry, Texas A&M University, College Station, TX, 77842, USA.,Center for Computational Quantum Chemistry, Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
25
|
Parella R, Jakkampudi S, Arman H, Zhao JCG. Stereoselective Synthesis of 3-Oxabicyclo[3.3.1]nonan-2-ones via a Domino Reaction Catalyzed by Modularly Designed Organocatalysts. Adv Synth Catal 2019; 361:208-213. [PMID: 31467501 PMCID: PMC6715131 DOI: 10.1002/adsc.201800987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 01/29/2023]
Abstract
A highly stereoselective method for the synthesis of functionalized 3-oxabicyclo[3.3.1]nonan-2-one derivatives with four contiguous stereogenic centers, including one tetrasubstituted stereogenic center, was realized through an organocatalytic domino Michael-hemiacetalization-Michael reaction of (E)-3-aryl-2-nitroprop-2-enols and (E)-7-aryl-7-oxohept-5-enals followed by a PCC oxidation. Using the modularly designed organocatalysts (MDOs) self-assembled from cinchona alkaloid derivatives and amino acids in the reaction media, the title products were obtained in good yields (up to 84%), excellent diastereoselectivities (> 99:1 dr), and high enantioselectivities (up to 96% ee).
Collapse
Affiliation(s)
- Ramarao Parella
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, Fax: (+1)-210-458-7428; phone: (+1)-210-458-5432
| | - Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, Fax: (+1)-210-458-7428; phone: (+1)-210-458-5432
| | - Hadi Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, Fax: (+1)-210-458-7428; phone: (+1)-210-458-5432
| | - John C.-G. Zhao
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, Fax: (+1)-210-458-7428; phone: (+1)-210-458-5432
| |
Collapse
|
26
|
Jakkampudi S, Parella R, Zhao JCG. Stereoselective synthesis of chromane derivatives via a domino reaction catalyzed by modularly designed organocatalysts. Org Biomol Chem 2018; 17:151-155. [PMID: 30525178 PMCID: PMC6317902 DOI: 10.1039/c8ob02677g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A highly enantio- and diastereoselective method for the synthesis of functionalized chroman-2-ones and chromanes was achieved by using an organocatalytic domino Michael/hemiacetalization reaction of aliphatic aldehydes and (E)-2-(2-nitrovinyl)phenols followed by a PCC oxidation and dehydroxylation, respectively. Using the modularly designed organocatalysts (MDOs) self-assembled from cinchona alkaloid derivatives and amino acids in the reaction media, the title products were obtained in good to high yields (up to 97%) and excellent diastereoselectivities (up to 99 : 1 dr) and enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Satish Jakkampudi
- Department of Chemistry, University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249-0698, USA.
| | | | | |
Collapse
|