1
|
Pegram L, Riccardi D, Ahn N. Activation Loop Plasticity and Active Site Coupling in the MAP Kinase, ERK2. J Mol Biol 2023; 435:168309. [PMID: 37806554 PMCID: PMC10676806 DOI: 10.1016/j.jmb.2023.168309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Previous studies of the protein kinase, ERK2, using NMR and hydrogen-exchange measurements have shown changes in dynamics accompanying its activation by phosphorylation. However, knowledge about the conformational motions involved is incomplete. Here, we examined ERK2 using long conventional molecular dynamics (MD) simulations starting from crystal structures of phosphorylated (2P) and unphosphorylated (0P) forms. Individual trajectories were run for (5 to 25) μs, totaling 727 μs. The results show unexpected flexibility of the A-loop, with multiple long-lived (>5 μs) conformational states in both 2P- and 0P-ERK2. Differential contact network and principal component analyses reveal coupling between the A-loop fold and active site dynamics, with evidence for conformational selection in the kinase core of 2P-ERK2 but not 0P-ERK2. Simulations of 2P-ERK2 show A-loop states corresponding to restrained dynamics within the N-lobe, including regions around catalytic residues. One A-loop conformer forms lasting interactions with the L16 segment, leading to reduced RMSF and greater compaction in the active site. By contrast, simulations of 0P-ERK2 reveal excursions of A-loop residues away from the C-lobe, leading to greater active site mobility. Thus, the A-loop in ERK2 switches between distinct conformations that reflect coupling with the active site, possibly via the L16 segment. Crystal packing interactions suggest that lattice contacts with the A-loop may restrain its structural variation in X-ray structures of ERK2. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.
Collapse
Affiliation(s)
- Laurel Pegram
- Department of Biochemistry, University of Colorado, Boulder, CO 80305, USA
| | - Demian Riccardi
- Thermodynamics Research Center, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO, USA
| | - Natalie Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO 80305, USA.
| |
Collapse
|
2
|
Pegram L, Riccardi D, Ahn N. Activation loop plasticity and active site coupling in the MAP kinase, ERK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537040. [PMID: 37090603 PMCID: PMC10120733 DOI: 10.1101/2023.04.15.537040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Changes in the dynamics of the protein kinase, ERK2, have been shown to accompany its activation by dual phosphorylation. However, our knowledge about the conformational changes represented by these motions is incomplete. Previous NMR relaxation dispersion studies showed that active, dual-phosphorylated ERK2 undergoes global exchange between at least two energetically similar conformations. These findings, combined with measurements by hydrogen exchange mass spectrometry (HX-MS), suggested that the global conformational exchange involves motions of the activation loop (A-loop) that are coupled to regions surrounding the kinase active site. In order to better understand the contribution of dynamics to the activation of ERK2, we applied long conventional molecular dynamics (MD) simulations starting from crystal structures of active, phosphorylated (2P), and inactive, unphosphorylated (0P) ERK2. Individual trajectories were run for (5 to 25) µ s and totaled 727 µ s. The results showed that the A-loop is unexpectedly flexible in both 2P- and 0P-ERK2, and able to adopt multiple long-lived (>5 µ s) conformational states. Simulations starting from the X-ray structure of 2P-ERK2 (2ERK) revealed A-loop states corresponding to restrained dynamics within the N-lobe, including regions surrounding catalytic residues. One A-loop conformer forms lasting interactions with the C-terminal L16 segment and shows reduced RMSF and greater compaction in the active site. By contrast, simulations starting from the most common X-ray conformation of 0P-ERK2 (5UMO) reveal frequent excursions of A-loop residues away from a C-lobe docking site pocket and towards a new state that shows greater dynamics in the N-lobe and disorganization around the active site. Thus, the A-loop in ERK2 appears to switch between distinct conformational states that reflect allosteric coupling with the active site, likely occurring via the L16 segment. Analyses of crystal packing interactions across many structural datasets suggest that the A-loop observed in X-ray structures of ERK2 may be driven by lattice contacts and less representative of the solution structure. The novel conformational states identified by MD expand our understanding of ERK2 regulation, by linking the activated state of the kinase to reduced dynamics and greater compaction surrounding the catalytic site.
Collapse
|
3
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
4
|
Dynamic equilibria in protein kinases. Curr Opin Struct Biol 2021; 71:215-222. [PMID: 34425481 DOI: 10.1016/j.sbi.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Structural changes involved in protein kinase activation and ligand binding have been determined from a wealth of X-ray crystallographic evidence. Recent solution studies using NMR, EPR, HX-MS, and fluorescence techniques have deepened this understanding by highlighting the underlying energetics and dynamics of multistate conformational ensembles. This new research is showing how activation mechanisms and ligand binding alter the internal motions of kinases and enable allosteric coupling between distal regulatory regions and the active site.
Collapse
|
5
|
Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proc Natl Acad Sci U S A 2019; 116:15463-15468. [PMID: 31311868 DOI: 10.1073/pnas.1906824116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.
Collapse
|