1
|
Balaso Mohite S, Kousin Mirza Y, Kumar V, Partap S, Baji Baba S, Alake J, Bera M, Karpoormath R. Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen. Chemistry 2024; 30:e202304239. [PMID: 38317443 DOI: 10.1002/chem.202304239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The advancement of sustainable chemistry and changes in the economy are strongly intertwined. Reaction time, cost savings, moderate temperatures, and generation of the fewest byproducts are frequently achieved by using catalytic processes. Herein, we report the C-H olefination of imidazo[1,2a] pyridine carboxamides with various acrylates in the presence of Pd (OAc)2 with O2 as the oxidant in aqueous ethanol rather than using non-ecofriendly solvents. The C-H activation features most user-friendly reaction conditions, excellent yield as well as plenty substrate scope and applicable for C-H deuteriation of the corresponding heteroarenes with D2O. Experimental mechanistic studies indicate that C-H activation step succeeded after formation of tetra coordinated square planer Pd-substrate adduct.
Collapse
Affiliation(s)
- Sachin Balaso Mohite
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Yafia Kousin Mirza
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Vishal Kumar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sangh Partap
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Shaik Baji Baba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - John Alake
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Milan Bera
- Photocatalysis & Synthetic Methodology Lab (PSML), Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida, 201303, India
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| |
Collapse
|
2
|
Lv XX, Liu N, Chen F, Zhang H, Du ZH, Wang P, Yuan M, Da CS. Highly asymmetric aldol reaction of isatins and ketones catalyzed by chiral bifunctional primary-amine organocatalyst on water. Org Biomol Chem 2023; 21:8695-8701. [PMID: 37861676 DOI: 10.1039/d3ob01227a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Herein, we have reported an environmentally friendly asymmetric aldol reaction between isatins and ketones catalyzed by double-hydrogen-bonded primary amine organocatalysts on water under mild conditions. Enantioenriched 3-hydroxy-2-oxindoles were obtained in high yields (up to 99%) and excellent stereoselectivities (up to 99 : 1 dr and 99% ee) under optimal conditions. Furthermore, the model reaction involving isatin and cyclohexanone was successfully scaled to 10 mmol with no reduction in yield or stereoselectivity. In addition, the catalyst was recovered via simple filtration and was subsequently reused on water, which highlights its good application potential.
Collapse
Affiliation(s)
- Xiao-Xiong Lv
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Zhi-Hong Du
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China.
| | - Pei Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Meng Yuan
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Shan Da
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
4
|
Serrano JL. Water-Soluble Pd-Imidate Complexes as Versatile Catalysts for the Modification of Unprotected Halonucleosides. CHEM REC 2022; 22:e202200179. [PMID: 36094784 DOI: 10.1002/tcr.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Modification of unprotected nucleosides has been attracting continuous interest, since these building blocks themselves and their phosphate-upgraded corresponding nucleotides have shown a plethora of uses in fields like biochemistry or pharmacy. Pd-catalyzed cross-coupling reactions, conducted in water or its mixtures with polar organic solvents, have frequently been the researchers' choice for the functionalization of the purine/pyrimidine base of the unprotected nucleosides. In this scenario, the availability of hydrophilic ligands and its water-soluble palladium complexes has markedly set the pace of the advances. The approach of our group to the synthesis of such complexes, Pd-imidates specifically, has faced critical stages, namely the jump to synthesize water soluble complexes from our experience working in conventional solvents, the preparation of phosphine free complexes and the overall goal of getting catalytic systems able to work close to room temperature. The continuous feedback with Kapdi's group, experienced in the chemistry of nucleosides, has produced over the last decade the interesting results in both fields presented here.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental., Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203, Cartagena, Spain
| |
Collapse
|
5
|
Sustainable functionalization and modification of materials via multicomponent reactions in water. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Roca Jungfer M, Abram U. Unlocking Air- and Water-Stable Technetium Acetylides and Other Organometallic Complexes. Inorg Chem 2022; 61:7765-7779. [PMID: 35548933 DOI: 10.1021/acs.inorgchem.2c00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first technetium complexes containing anionic alkynido ligands in an end-on coordination mode have been prepared by using the nonprotic, cationic precursor mer,trans-[Tc(SMe2)(CO)3(PPh3)2]+. This cation acts as a functional analogue of the highly reactive 16-electron metallo Lewis acid {Tc(CO)3(PPh3)2}+ in reactions with alkynes, acetylides, and other organometallic reagents. Such reactions give a variety of organometallic technetium complexes in excellent yields and enable the preparation of [Tc(CH3)(CO)3(PPh3)2], [Tc(Ph)(CO)3(PPh3)2], [Tc(Cp)(CO)2(PPh3)], [Tc(═CCH2CH2CH2O)(CO)3(PPh3)2]+, [Tc(═CCH2CH2CH2CH2O)(CO)3(PPh3)2]+, [Tc(C≡C-H)(CO)3(PPh3)2], [Tc(C≡C-Ph)(CO)3(PPh3)2], [Tc(C≡C-tBu)(CO)3(PPh3)2], [Tc(C≡C-nBu)(CO)3(PPh3)2], [Tc(C≡C-SiMe3)(CO)3(PPh3)2], and [Tc{C≡C-C6H3(CF3)2}(CO)3(PPh3)2]. The bonding situation in the alkynyl complexes is compared to that in corresponding alkyl- and arylnitrile and -isonitrile complexes. [Tc(N≡C-Ph)(CO)3(PPh3)2](BF4), [Tc(C≡N-Ph)(CO)3(PPh3)2](BF4), [Tc(N≡C-tBu)(CO)3(PPh3)2](BF4), and [Tc(C≡N-tBu)(CO)3(PPh3)2](BF4) were prepared in high yields by ligand exchange reactions starting from mer,trans-[Tc(OH2)(CO)3(PPh3)2](BF4). The novel complexes were characterized by single-crystal X-ray diffraction and spectroscopic methods. In particular, 99Tc nuclear magnetic resonance spectroscopy proved to be an invaluable and sensitive tool for the characterization of the complexes. Density functional theory calculations strongly suggest similar bonding situations for the related alkynyl, nitrile, and isonitrile complexes of technetium.
Collapse
Affiliation(s)
- Maximilian Roca Jungfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, D-14195 Berlin, Germany
| | - Ulrich Abram
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 34/36, D-14195 Berlin, Germany
| |
Collapse
|
7
|
Chilamari M, Immel JR, Chen PH, Alghafli BM, Bloom S. Flavin Metallaphotoredox Catalysis: Synergistic Synthesis in Water. ACS Catal 2022; 12:4175-4181. [DOI: 10.1021/acscatal.2c00773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Jacob R. Immel
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pei-Hsuan Chen
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Bayan M. Alghafli
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Jordan A, Hall CGJ, Thorp LR, Sneddon HF. Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chem Rev 2022; 122:6749-6794. [PMID: 35201751 PMCID: PMC9098182 DOI: 10.1021/acs.chemrev.1c00672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipolar aprotic and ethereal solvents comprise just over 40% of all organic solvents utilized in synthetic organic, medicinal, and process chemistry. Unfortunately, many of the common "go-to" solvents are considered to be "less-preferable" for a number of environmental, health, and safety (EHS) reasons such as toxicity, mutagenicity, carcinogenicity, or for practical handling reasons such as flammability and volatility. Recent legislative changes have initiated the implementation of restrictions on the use of many of the commonly employed dipolar aprotic solvents such as dimethylformamide (DMF) and N-methyl-2-pyrrolidinone (NMP), and for ethers such as 1,4-dioxane. Thus, with growing legislative, EHS, and societal pressures, the need to identify and implement the use of alternative solvents that are greener, safer, and more sustainable has never been greater. Within this review, the ubiquitous nature of dipolar aprotic and ethereal solvents is discussed with respect to the physicochemical properties that have made them so appealing to synthetic chemists. An overview of the current legislative restrictions being imposed on the use of dipolar aprotic and ethereal solvents is discussed. A variety of alternative, safer, and more sustainable solvents that have garnered attention over the past decade are then examined, and case studies and examples where less-preferable solvents have been successfully replaced with a safer and more sustainable alternative are highlighted. Finally, a general overview and guidance for solvent selection and replacement are included in the Supporting Information of this review.
Collapse
Affiliation(s)
- Andrew Jordan
- School of Chemistry, University of Nottingham, GlaxoSmithKline Carbon Neutral Laboratory, 6 Triumph Road, Nottingham, NG7 2GA, U.K
| | - Callum G J Hall
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow, Scotland G1 1XL, U.K.,GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Lee R Thorp
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Helen F Sneddon
- Green Chemistry Centre of Excellence, University of York, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
9
|
Serrano JL, Gaware S, Pérez JA, Pérez J, Lozano P, Kori S, Dandela R, Sanghvi YS, Kapdi AR. Quadrol-Pd(II) complexes: phosphine-free precatalysts for the room-temperature Suzuki-Miyaura synthesis of nucleoside analogues in aqueous media. Dalton Trans 2022; 51:2370-2384. [PMID: 35043803 DOI: 10.1039/d1dt03778a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Commercially available Quadrol, N,N,N',N'-tetrakis(2-hydroxypropyl)ethylenediamine (THPEN), has been used for the first time as a N^N-donor neutral hydrophilic ligand in the synthesis and characterization of new water soluble palladium(II) complexes containing chloride, phthalimidate or saccharinate as co-ligands. [PdCl2(THPEN)] (1) [Pd(phthal)2(THPEN)] (2), [Pd(sacc)2(THPEN)] (3) and the analogous complex with the closely related N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (THEEN) [Pd(sacc)2(THEEN)] (4) were efficiently prepared in a one-pot reaction from [PdCl2(CH3CN)2] or Pd(OAc)2. Structural characterization of 1 and 3 by single crystal X-ray diffraction produced the first structures reported to date of palladium complexes with Quadrol. The resultant palladium complexes are highly soluble in water and were found to be effective as phosphine-free catalysts for the synthesis of functionalized nucleoside analogues under room-temperature Suzuki-Miyaura cross-coupling conditions between 5-iodo-2'-deoxyuridine (& 5-iodo-2'-deoxycytidine) with different aryl boronic acids in neat water. This is the first report of the coupling process performed on nucleosides in water at room temperature.
Collapse
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Sujeet Gaware
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Jose Antonio Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - José Pérez
- Departamento de Ingeniería Química y Ambiental. Área de Química Inorgánica, Universidad Politécnica de Cartagena member of European University of Technology, 30203 Cartagena, Spain.
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30071 Murcia, Spain
| | - Santosh Kori
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| | - Rambabu Dandela
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Yogesh S Sanghvi
- Rasayan Inc. 2802, Crystal Ridge Road, Encinitas, California, 92024-6615, USA
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Nathalal Road, Matunga, Mumbai-400019, India.
| |
Collapse
|
10
|
Lin LZ, Yang S, Liu WH, Shie JJ. Dichotomous Selectivity in Indium-Mediated Aza-Barbier-Type Allylation of 2- N-Acetyl Glycosyl Sulfinylimines in Brine: Convenient Access to Potent Anti-Influenza Agents. J Org Chem 2022; 87:2324-2335. [PMID: 35075895 DOI: 10.1021/acs.joc.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly diastereoselective indium-mediated allylation of 2-N-acetyl glycosyl sulfinylimines in brine under mild reaction conditions is reported. The method allows the achievement of a highly remarkable dichotomous selectivity for substrates, providing a single diastereoisomer of the product in 80-98% yield. With chiral (S)-homoallylic sulfinamide (RS)-5 and (RS)-8 formed as key intermediates, two potent anti-influenza agents, zanamivir and zanaphosphor, were synthesized in 50% and 41% overall yields, respectively.
Collapse
Affiliation(s)
- Long-Zhi Lin
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng Yang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Hsuan Liu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
11
|
Hazra S, Johansson Seechurn CCC, Handa S, Colacot TJ. The Resurrection of Murahashi Coupling after Four Decades. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Susanta Hazra
- 2320 S. Brook St., Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | | | - Sachin Handa
- 2320 S. Brook St., Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Thomas J. Colacot
- Millipore Sigma (Business of Merck KGaA, Darmstadt, Germany), 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| |
Collapse
|
12
|
Mandal S, Chaudhari RD, Biswas G. Advances in mercury(II)-salt-mediated cyclization reactions of unsaturated bonds. Beilstein J Org Chem 2021; 17:2348-2376. [PMID: 34621398 PMCID: PMC8450975 DOI: 10.3762/bjoc.17.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
The synthesis of complex cyclic compounds is extremely challenging for organic chemists. Many transition-metal-salt-mediated cyclizations are reported in literature. Hg(II) salts have been successfully employed in cyclizations to form complex heterocyclic and carbocyclic structures that are impossible to synthesize with other transition metal salts. In this review, we have summarized cyclization reactions that are performed with Hg(II) salts. These salts are also successfully applied in stoichiometric or catalytic amounts to form complex cyclic structures and natural products.
Collapse
Affiliation(s)
- Sumana Mandal
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar - 736101, West Bengal, India
| | - Raju D Chaudhari
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar - 736101, West Bengal, India
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar - 736101, West Bengal, India
| |
Collapse
|
13
|
González‐Granda S, Lavandera I, Gotor‐Fernández V. Alcohol Dehydrogenases and N‐Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β‐Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sergio González‐Granda
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| | - Vicente Gotor‐Fernández
- Organic and Inorganic Chemistry Department University of Oviedo Avenida Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
14
|
González-Granda S, Lavandera I, Gotor-Fernández V. Alcohol Dehydrogenases and N-Heterocyclic Carbene Gold(I) Catalysts: Design of a Chemoenzymatic Cascade towards Optically Active β,β-Disubstituted Allylic Alcohols. Angew Chem Int Ed Engl 2021; 60:13945-13951. [PMID: 33721361 DOI: 10.1002/anie.202015215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/22/2021] [Indexed: 12/14/2022]
Abstract
The combination of gold(I) and enzyme catalysis is used in a two-step approach, including Meyer-Schuster rearrangement of a series of readily available propargylic alcohols followed by stereoselective bioreduction of the corresponding allylic ketone intermediates, to provide optically pure β,β-disubstituted allylic alcohols. This cascade involves a gold N-heterocyclic carbene and an enzyme, demonstrating the compatibility of both catalyst types in aqueous medium under mild reaction conditions. The combination of [1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene][bis(trifluoromethanesulfonyl)-imide]gold(I) (IPrAuNTf2 ) and a selective alcohol dehydrogenase (ADH-A from Rhodococcus ruber, KRED-P1-A12 or KRED-P3-G09) led to the synthesis of a series of optically active (E)-4-arylpent-3-en-2-ols in good yields (65-86 %). The approach was also extended to various 2-hetarylpent-3-yn-2-ol, hexynol, and butynol derivatives. The use of alcohol dehydrogenases of opposite selectivity led to the production of both allyl alcohol enantiomers (93->99 % ee) for a broad panel of substrates.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
15
|
Dilauro G, Azzollini CS, Vitale P, Salomone A, Perna FM, Capriati V. Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angew Chem Int Ed Engl 2021; 60:10632-10636. [PMID: 33605516 DOI: 10.1002/anie.202101571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/24/2022]
Abstract
Pd-catalyzed Negishi cross-coupling reactions between organozinc compounds and (hetero)aryl bromides have been reported when using bulk water as the reaction medium in the presence of NaCl or the biodegradable choline chloride/urea eutectic mixture. Both C(sp3 )-C(sp2 ) and C(sp2 )-C(sp2 ) couplings have been found to proceed smoothly, with high chemoselectivity, under mild conditions (room temperature or 60 °C) in air, and in competition with protonolysis. Additional benefits include very short reaction times (20 s), good to excellent yields (up to 98 %), wide substrate scope, and the tolerance of a variety of functional groups. The proposed novel protocol is scalable, and the practicability of the method is further highlighted by an easy recycling of both the catalyst and the eutectic mixture or water.
Collapse
Affiliation(s)
- Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Claudia S Azzollini
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Salomone
- Dipartimento di Chimica, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Filippo M Perna
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
16
|
Dilauro G, Azzollini CS, Vitale P, Salomone A, Perna FM, Capriati V. Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Claudia S. Azzollini
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Antonio Salomone
- Dipartimento di Chimica Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Filippo M. Perna
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco Università di Bari “Aldo Moro” Consorzio C.I.N.M.P.I.S. Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
17
|
Fanjul-Mosteirín N, del Amo V. Organocatalytic transformations in deep eutectic solvents: Green methodologies made greener. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Cortes-Clerget M, Yu J, Kincaid JRA, Walde P, Gallou F, Lipshutz BH. Water as the reaction medium in organic chemistry: from our worst enemy to our best friend. Chem Sci 2021; 12:4237-4266. [PMID: 34163692 PMCID: PMC8179471 DOI: 10.1039/d0sc06000c] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/02/2021] [Indexed: 12/22/2022] Open
Abstract
A review presenting water as the logical reaction medium for the future of organic chemistry. A discussion is offered that covers both the "on water" and "in water" phenomena, and how water is playing unique roles in each, specifically with regard to its use in organic synthesis.
Collapse
Affiliation(s)
| | - Julie Yu
- Department of Chemistry & Biochemistry, University of California Santa Barbara California 93106 USA
| | - Joseph R A Kincaid
- Department of Chemistry & Biochemistry, University of California Santa Barbara California 93106 USA
| | - Peter Walde
- Department of Materials, ETH Zurich Zurich Switzerland
| | - Fabrice Gallou
- Chemical & Analytical Development Novartis Pharma AG 4056 Basel Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry & Biochemistry, University of California Santa Barbara California 93106 USA
| |
Collapse
|
19
|
Orr SA, Andrews PC, Blair VL. Main Group Metal-Mediated Transformations of Imines. Chemistry 2021; 27:2569-2588. [PMID: 32761667 DOI: 10.1002/chem.202003108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Main-group-metal-mediated transformations of imines have earned a valued place in the synthetic chemist's toolbox. Their versatility allows the simple preparation of various nitrogen containing compounds. This review will outline the early discoveries including metallation, addition/cyclisation and metathesis pathways, followed by the modern-day use of imines in synthetic methodology. Recent advances in imine C-F activation protocols are discussed, alongside revisiting "classic" imine reactivity from a sustainable perspective. Developments in catalytic methods for hydroelementation of imines have been reviewed, highlighting the importance of s-block metals in the catalytic arena. Whilst stoichiometric transformations in alternative reaction media such as deep eutectic solvents or water have been summarised. The incorporation of imines into flow chemistry has received recent attention and is summarised within.
Collapse
Affiliation(s)
- Samantha A Orr
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Wellington Road, Clayton, Melbourne, VIC, 3800, Australia
| |
Collapse
|
20
|
Quivelli AF, D’Addato G, Vitale P, García-Álvarez J, Perna FM, Capriati V. Expeditious and practical synthesis of tertiary alcohols from esters enabled by highly polarized organometallic compounds under aerobic conditions in Deep Eutectic Solvents or bulk water. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
|
22
|
Cicco L, Dilauro G, Perna FM, Vitale P, Capriati V. Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Org Biomol Chem 2021; 19:2558-2577. [DOI: 10.1039/d0ob02491k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights recent advances in metal- and biocatalyzed transformations, in the synthesis of APIs and other biologically active compounds, when employing deep eutectic solvents and water as environmentally responsible solvents.
Collapse
Affiliation(s)
- Luciana Cicco
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Giuseppe Dilauro
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| | - Vito Capriati
- Dipartimento di Farmacia-Scienze del Farmaco
- Università di Bari “Aldo Moro”
- Consorzio C.I.N.M.P.I.S
- Bari
- Italy
| |
Collapse
|
23
|
Serrano JL, García L, Pérez J, Lozano P, Correia J, Kori S, Kapdi AR, Sanghvi YS. Imine-Palladacycles as Phosphine-Free Precatalysts for Low-Temperature Suzuki–Miyaura Synthesis of Nucleoside Analogues in Aqueous Media. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- José Luis Serrano
- Departamento de Ingeniería Química, Área de Química Inorgánica, 30203 Regional Campus of International Excellence, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Luis García
- Departamento de Ingeniería Química, Área de Química Inorgánica, 30203 Regional Campus of International Excellence, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - José Pérez
- Departamento de Ingeniería Química, Área de Química Inorgánica, 30203 Regional Campus of International Excellence, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30071 Murcia, Spain
| | - Jevy Correia
- Institute of Chemical Technology, Mumbai, Nathalal Road,
Matunga, Mumbai 400019, India
| | - Santosh Kori
- Institute of Chemical Technology, Mumbai, Nathalal Road,
Matunga, Mumbai 400019, India
- Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar 751013, Odisha, India
| | - Anant R. Kapdi
- Institute of Chemical Technology, Mumbai, Nathalal Road,
Matunga, Mumbai 400019, India
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| |
Collapse
|
24
|
Jordan A, Stoy P, Sneddon HF. Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chem Rev 2020; 121:1582-1622. [DOI: 10.1021/acs.chemrev.0c00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andrew Jordan
- GlaxoSmithKline Carbon Neutral Laboratory for Sustainable Chemistry, Jubilee Campus, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Patrick Stoy
- Drug Design and Selection, Platform and Technology Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Helen F. Sneddon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
25
|
Gou XY, Zhang BS, Wang XG, Shi WY, Liu HC, An Y, Zhang Z, Liang YM. Visible-light-induced ligand-free RuCl 3 catalyzed C-H phosphorylation in water. Chem Commun (Camb) 2020; 56:4704-4707. [PMID: 32215394 DOI: 10.1039/d0cc00420k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Visible-light-induced C-H phosphorylation of para-CAr-H and heteroarenes was realized using cost-effective RuCl3 as a catalyst. The reaction conditions are green and environmentally friendly, using water as a solvent at room temperature and without ligands. A broad range of highly functional organophosphorus compounds were obtained via a cross-dehydrogenation-coupling (CDC) reaction. In addition, we also proved that RuCl3 is a photocatalyst via its absorption spectrum and on/off light experiments.
Collapse
Affiliation(s)
- Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gadkari YU, Hatvate NT, Takale BS, Telvekar VN. Concentrated solar radiation as a renewable heat source for a preparative-scale and solvent-free Biginelli reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj01351j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Highly sustainable, economical, and faster Biginelli reaction has been established using concentrated solar radiation.
Collapse
Affiliation(s)
- Yatin U. Gadkari
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai
- India
| | - Navnath T. Hatvate
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai
- India
| | - Balaram S. Takale
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Vikas N. Telvekar
- Department of Pharmaceutical Sciences and Technology
- Institute of Chemical Technology
- Mumbai
- India
| |
Collapse
|
27
|
Mitra T, Kundu M, Roy B. Additive-Free, Pd-Catalyzed 3-Amino-1-methyl-1H-pyridin-2-one-Directed C(sp2)–H Arylation and Methylation in Water. J Org Chem 2019; 85:345-359. [PMID: 31799845 DOI: 10.1021/acs.joc.9b02122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Trisha Mitra
- University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Ltd., BN-7, Sector
V, Salt Lake City, Kolkata 700091, India
| | - Brindaban Roy
- University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| |
Collapse
|
28
|
Le TQ, Karmakar S, Lee S, Chai U, Le MH, Oh CH. Generation of the Icetexane Core by Use of a Heck Strategy: Total Synthesis of Taxamairin B. ChemistrySelect 2019. [DOI: 10.1002/slct.201903404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Thuy Quynh Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Swastik Karmakar
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
- Department of ChemistryBasirhat College Basirhat 743412, West Bengal India
| | - Seonmi Lee
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Uiseong Chai
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Minh Hoang Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Chang Ho Oh
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
29
|
Bi HY, Du M, Pan CX, Xiao Y, Su GF, Mo DL. Nickel(II)-Catalyzed [5 + 1] Annulation of 2-Carbonyl-1-propargylindoles with Hydroxylamine To Synthesize Pyrazino[1,2- a]indole-2-oxides in Water. J Org Chem 2019; 84:9859-9868. [PMID: 31347845 DOI: 10.1021/acs.joc.9b00784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An atom-economical and practical method for the efficient synthesis of various pyrazino[1,2-a]indole-2-oxides was developed through a nickel(II)-catalyzed [5 + 1] annulation of 2-carbonyl-1-propargylindoles with hydroxylamine in water without using an organic solvent. The reaction involved an initial condensation of 2-carbonyl-1-propargylindoles with hydroxylamine to afford oxime intermediates, which then underwent a nickel(II)-catalyzed 6-exo-dig cyclization. Preliminary studies showed that (n-Bu)4NI served as a phase transfer catalyst and promoted the formation of active nickel(II) species. More importantly, the nickel(II) salt and phase transfer catalyst-in-water could be recycled seven times, and a gram scalable product was easily obtained in good yields through a filtration and washing protocol.
Collapse
Affiliation(s)
- Hong-Yan Bi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Min Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Yuhong Xiao
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan 411201 , P. R. China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, School of Chemistry & Pharmaceutical Sciences , Guangxi Normal University , 15 Yu Cai Road , Guilin 541004 , China
| |
Collapse
|
30
|
Hua L, Geng Y, Wang W, Feng J, Ma ZH. Solvent-Assistant Purification for the Synthesis of Indole Derivatives Catalyzed by Solid Acid. ChemistrySelect 2019. [DOI: 10.1002/slct.201900351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lezhou Hua
- Department of Chemistry; College of Sciences; Huazhong Agricultural University; No.1, Shizishan Street, Hongshan District Wuhan, 430070 China
| | - Yanyan Geng
- Department of Chemistry; College of Sciences; Huazhong Agricultural University; No.1, Shizishan Street, Hongshan District Wuhan, 430070 China
| | - Wen Wang
- Department of Chemistry; College of Sciences; Huazhong Agricultural University; No.1, Shizishan Street, Hongshan District Wuhan, 430070 China
| | - Juhong Feng
- Key Laboratory for Green Chemical Process of Ministry of Education; School of Chemical Engineering and Pharmacy; Wuhan Institute of Technology; No. 206, Guanggu 1 Road, Donghu New Technology Industrial Development Zone Wuhan, 430205 China
| | - Zhong-Hua Ma
- Department of Chemistry; College of Sciences; Huazhong Agricultural University; No.1, Shizishan Street, Hongshan District Wuhan, 430070 China
| |
Collapse
|