1
|
Quan MX, Wu Y, Liu QY, Bu ZQ, Lu JY, Huang WT. Multimorphological Remoldable Silver Nanomaterials from Multimode and Multianalyte Colorimetric Sensing to Molecular Information Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38693-38706. [PMID: 37542464 DOI: 10.1021/acsami.3c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Inspired by life's interaction networks, ongoing efforts are to increase complexity and responsiveness of multicomponent interactions in the system for sensing, programmable control, or information processing. Although exquisite preparation of single uniform-morphology nanomaterials has been extremely explored, the potential value of facile and one-pot preparation of multimorphology nanomaterials has been seriously ignored. Here, multimorphological silver nanomaterials (M-AgN) prepared by one pot can form interaction networks with various analytes, which can be successfully realized from multimode and multianalyte colorimetric sensing to molecular information technology (logic computing and security). The interaction of M-AgN with multianalytes not only induces multisignal responses (including color, absorbance, and wavelength shift) for sensing metal ions (Cr3+, Hg2+, and Ni2+) but also can controllably reshape its four morphologies (nanodots, nanoparticles, nanorods, and nanotriangles). By abstracting binary relationships between analytes and response signals, multicoding parallel logic operations (including simple logic gates and cascaded circuits) can be performed. In addition, taking advantage of natural concealment and molecular response characteristics of M-AgN nanosystems can also realize molecular information encoding, encryption, and hiding. This research not only promotes the construction and application of multinano interaction systems based on multimorphology and multicomponent nanoset but also provides a new imagination for the integration of sensing, logic, and informatization.
Collapse
Affiliation(s)
- Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
2
|
Gauci G, Magri DC. Solvent-polarity reconfigurable fluorescent 4-piperazino- N-aryl-1,8-naphthalimide crown ether logic gates. RSC Adv 2022; 12:35270-35278. [PMID: 36540226 PMCID: PMC9732761 DOI: 10.1039/d2ra07568g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 09/19/2023] Open
Abstract
Four compounds 1-4 were designed and synthesised, comprising a 4-amino-N-aryl-1,8-naphthalimide fluorophore, a piperazine receptor, and an aryl group, as fluorescent logic gates. At the imide position, the substituent is phenyl (1), 1,2-dimethoxyphenyl (2), benzo-15-crown-5 (3), or benzo-18-crown-6 (4). Molecules 1 and 2 are constructed according to a fluorophore-spacer-receptor format, while 3 and 4 are engineered according to a receptor1-spacer1-fluorophore-spacer2-receptor2 format based on photoinduced electron transfer and internal charge transfer mechanisms. The compounds were studied in water, water/methanol mixtures of different ratios, and methanol by UV-visible absorption and steady-state fluorescence spectroscopy, as a function of pH, metal ions and solvent polarity. The excited state of 1-4 is 8.4 ± 0.2 in water, 7.6 ± 0.1 in 1 : 1 (v/v) water/methanol, and 7.1 ± 0.3 in methanol. The of 3 in water is 0.92 and the and of 4 in water are 2.3 and 2.9. 1H NMR data in D2O and CD3OD confirm H+ interaction at the piperazine moiety, and Na+ and Ba2+ binding at the benzo-15-crown-5 and benzo-18-crown-6 moieties of 3 and 4. By altering the solvent polarity, the fluorescent logic gates can be reconfigured between TRANSFER logic and AND logic. Molecules with polarity reconfigurable logic could be useful tools for probing the microenvironment of cellular membranes and protein interfaces.
Collapse
Affiliation(s)
- Gabriel Gauci
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta Msida MSD 2080 Malta
| |
Collapse
|
3
|
Quan MX, Yao QF, Liu QY, Bu ZQ, Ding XZ, Xia LQ, Lu JY, Huang WT. Microwave-Assisted Synthesis of Silver Nanoparticles for Multimode Colorimetric Sensing of Multiplex Metal Ions and Molecular Informatization Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9480-9491. [PMID: 35138082 DOI: 10.1021/acsami.1c23559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic materials have been widely used in chemo/biosensing and biomedicine. However, little attention has been paid to the application of plasmonic materials in terms of the transition from molecular sensing to molecular informatization. Herein, we demonstrated that silver nanoparticles (AgNPs) prepared through facile and rapid microwave heating have multimode colorimetric sensing capabilities to different metal ions (Cr3+, Hg2+, and Ni2+), which can be further transformed into interesting and powerful molecular information technology (massively parallel molecular logic computing and molecular information protection). The prepared AgNPs can quantitatively and sensitively detect Cr3+ and Hg2+ in actual water samples. The AgNPs' multimode-guided multianalyte sensing processing was further investigated to construct a series of basic logic gates and advanced cascaded logic circuits by considering the analytes as the inputs and the colorimetric signals (like color, absorbance, wavelength shift) as the outputs. Moreover, the selective responses and molecular logic computing ability of AgNPs were also utilized to develop molecular cryptosteganography for encrypting and hiding some specific information, which proves that the molecular world and the information world are interconnected and use each other. This research not only opens the door for the transition from molecular sensing to molecular informatization but also provides an excellent opportunity for the construction of the "metaverse" of the molecular world.
Collapse
Affiliation(s)
- Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Feng Yao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Xue Zhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Li Qiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
4
|
Sammut D, Bugeja N, Szaciłowski K, Magri DC. Molecular engineering of fluorescent bichromophore 1,3,5-triaryl-Δ 2-pyrazoline and 4-amino-1,8-naphthalimide molecular logic gates. NEW J CHEM 2022. [DOI: 10.1039/d2nj02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emissive bichromophoric solvatochromatic molecules are introduced as a new platform for the development of fluorescent molecular logic gates.
Collapse
Affiliation(s)
- Darlene Sammut
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Nathalie Bugeja
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| | - Konrad Szaciłowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków, Poland
| | - David C. Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD2080, Malta
| |
Collapse
|
5
|
West MES, Yao CY, Melaugh G, Kawamoto K, Uchiyama S, de Silva AP. Fluorescent Molecular Logic Gates Driven by Temperature and by Protons in Solution and on Solid. Chemistry 2021; 27:13268-13274. [PMID: 34233035 DOI: 10.1002/chem.202101892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/22/2022]
Abstract
Temperature-driven fluorescent NOT logic is demonstrated by exploiting predissociation in a 1,3,5-trisubstituted Δ2 -pyrazoline on its own and when grafted onto silica microparticles. Related Δ2 -pyrazolines become proton-driven YES and NOT logic gates on the basis of fluorescent photoinduced electron transfer (PET) switches. Additional PASS 1 and YES+PASS 1 logic gates on silica are also demonstrated within the same family. Beside these small-molecule systems, a polymeric molecular thermometer based on a benzofurazan-derivatized N-isopropylacrylamide copolymer is attached to silica to produce temperature-driven fluorescent YES logic.
Collapse
Affiliation(s)
- Matthew E S West
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| | - Gavin Melaugh
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
- School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Kyoko Kawamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, UK
| |
Collapse
|
6
|
Magri DC. Logical sensing with fluorescent molecular logic gates based on photoinduced electron transfer. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Wright GD, Yao CY, Moody TS, de Silva AP. Fluorescent molecular logic gates based on photoinduced electron transfer (PET) driven by a combination of atomic and biomolecular inputs. Chem Commun (Camb) 2020; 56:6838-6841. [DOI: 10.1039/d0cc00478b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A meeting point for entities from chemistry, enzymology and computer science.
Collapse
Affiliation(s)
- Glenn D. Wright
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | - Chao-Yi Yao
- School of Chemistry and Chemical Engineering
- Queen's University
- Belfast BT9 5AG
- UK
| | | | | |
Collapse
|
8
|
Yao CY, Uchiyama S, de Silva AP. A Personal Journey across Fluorescent Sensing and Logic Associated with Polymers of Various Kinds. Polymers (Basel) 2019; 11:E1351. [PMID: 31416199 PMCID: PMC6723954 DOI: 10.3390/polym11081351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
Our experiences concerning fluorescent molecular sensing and logic devices and their intersections with polymer science are the foci of this brief review. Proton-, metal ion- and polarity-responsive cases of these devices are placed in polymeric micro- or nano-environments, some of which involve phase separation. This leads to mapping of chemical species on the nanoscale. These devices also take advantage of thermal properties of some polymers in water in order to reincarnate themselves as thermometers. When the phase separation leads to particles, the latter can be labelled with identification tags based on molecular logic. Such particles also give rise to reusable sensors, although molecular-scale resolution is sacrificed in the process. Polymeric nano-environments also help to organize rather complex molecular logic systems from their simple components. Overall, our little experiences suggest that researchers in sensing and logic would benefit if they assimilate polymer concepts.
Collapse
Affiliation(s)
- Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University, BT9 5AG Belfast, Northern Ireland.
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, BT9 5AG Belfast, Northern Ireland.
| |
Collapse
|