1
|
Pusterla J, Scoppola E, Appel C, Mukhina T, Shen C, Brezesinski G, Schneck E. Characterization of lipid bilayers adsorbed to functionalized air/water interfaces. NANOSCALE 2022; 14:15048-15059. [PMID: 36200471 DOI: 10.1039/d2nr03334h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lipid bilayers immobilized in planar geometries, such as solid-supported or "floating" bilayers, have enabled detailed studies of biological membranes with numerous experimental techniques, notably X-ray and neutron reflectometry. However, the presence of a solid support also has disadvantages as it complicates the use of spectroscopic techniques as well as surface rheological measurements that would require surface deformations. Here, in order to overcome these limitations, we investigate lipid bilayers adsorbed to inherently soft and experimentally well accessible air/water interfaces that are functionalized with Langmuir monolayers of amphiphiles. The bilayers are characterized with ellipsometry, X-ray scattering, and X-ray fluorescence. Grazing-incidence X-ray diffraction reveals that lipid bilayers in a chain-ordered state can have significantly different structural features than regular Langmuir monolayers of the same composition. Our results suggest that bilayers at air/water interfaces may be well suited for fundamental studies in the field of membrane biophysics.
Collapse
Affiliation(s)
- Julio Pusterla
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Ernesto Scoppola
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Christian Appel
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Brezesinski
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, Hochschulstrasse 8, 64289 Darmstadt, Germany.
| |
Collapse
|
2
|
Maine A, Encinas MV, Pavez J, Urzúa M, Günther G, Reyes I, Briones X. On the Preparation of Thin Films of Stearyl Methacrylate Directly Photo-polymerized at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11658-11665. [PMID: 36112511 DOI: 10.1021/acs.langmuir.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Characterization of bidimensional polymeric films at the air-water interface in the Langmuir trough, despite being a recurrent topic, usually refers to films of already formed polymeric materials, with very scarce reports on direct polymerization at the air-water interface. In the present work, we studied the photo-polymerization of stearyl methacrylate directly at the air-water interface under a nitrogen atmosphere, with the radical initiator solubilized in the aqueous phase. Two-dimensional (2D) polymerization was monitored by measuring the pressure-area isotherm at different irradiation times. The polymerization leads to a film with an isotherm different from that observed for the monomer, where the surface pressure is directly related to the irradiation time. The shape of this isotherm confirms the presence of a compressed liquid phase, where a higher order can be attained as a consequence of stronger packing forces involving polymer chains. The presence of inter-chain interactions allows rearrangements on the surface of the subphase, and even before the collapse a dense 2D ordering (with a solid phase-like behavior) can be observed. We present a new one-step, solvent-free procedure to obtain a photo-polymeric film directly at the air-water interface, which can be transferred to a solid surface by the Langmuir-Blodgett method, allowing film preparation of controlled thickness. Films were characterized by measuring properties such as thickness, roughness, and hydrophobicity and comparing them with films obtained from a conventional polymer. We report the differences between the interfacial behavior of amphiphilic molecules and nanomaterials such as films obtained by photo-polymerization, PSMA, directly on the air-water interface.
Collapse
Affiliation(s)
- A Maine
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Casilla 233, Santiago, Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - M V Encinas
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O'Higgins 3363 Santiago, Chile
| | - J Pavez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Soft Matter Research-Technology Center, SMAT-C, Universidad de Santiago de Chile, Av. B. O'Higgins 3363 Santiago, Chile
| | - M Urzúa
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - G Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Casilla 233, Santiago, Chile
| | - I Reyes
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Casilla 233, Santiago, Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - X Briones
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Región Metropolitana, Casilla 233, Santiago, Chile
| |
Collapse
|
3
|
Vaillard AS, El Haitami A, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Cantin S. Surface Pressure-Induced Interdiffused Structure Evidenced by Neutron Reflectometry in Cellulose Acetate/Polybutadiene Langmuir Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5717-5730. [PMID: 33905653 DOI: 10.1021/acs.langmuir.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Binary blends of water-insoluble polymers are a versatile strategy to obtain nanostructured films at the air-water interface. However, there are few reported structural studies of such systems in the literature. Depending on the compatibility of the polymers and the role of the air-water interface, one can expect various morphologies. In that context, we probed Langmuir monolayers of cellulose acetate (CA), of deuterated and postoxidized polybutadiene (PBd) and three mixtures of CA/PBd at various concentrations by coupling surface pressure-area isotherms, Brewster angle microscopy (BAM), and neutron reflectometry at the air-water interface to determine their thermodynamic and structural properties. The homogeneity of the films in the vertical direction, averaged laterally over the spatial coherence length of the neutron beam (∼5 μm), was assessed by neutron reflectometry measurements using D2O/H2O subphases contrast-matched to the mixed films. At 5 mN/m, the whole mixed films can be described by a single slightly hydrated thin layer. However, at 15 mN/m, the fit of the reflectivity curves requires a two-layer model consisting of a CA/PBd blend layer in contact with the water, interdiffused with a PBd layer at the interface with air. At intermediate surface pressure (10 mN/m), the determined structure was between those obtained at 5 and 15 mN/m depending on film composition. This PBd enrichment at the air-film interface at high surface pressure, which leads to the PBd depletion in the blend monolayer at the water surface, is attributed to the hydrophobic character of this polymer compared with the predominantly hydrophilic CA.
Collapse
Affiliation(s)
| | | | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12, F-91191 Gif-sur-Yvette, France
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 rue des Sts-Pères, 75006 Paris, France
| | | |
Collapse
|
4
|
Matsuura K, Kuboyama K, Ougizawa T. Interfacial region of poly(
n
‐butyl
acrylate)/silicon oxide. J Appl Polym Sci 2021. [DOI: 10.1002/app.50268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kazuki Matsuura
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Keiichi Kuboyama
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| | - Toshiaki Ougizawa
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
5
|
Appel C, Kuttich B, Stühn L, Stark RW, Stühn B. Structural Properties and Magnetic Ordering in 2D Polymer Nanocomposites: Existence of Long Magnetic Dipolar Chains in Zero Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12180-12191. [PMID: 31430162 DOI: 10.1021/acs.langmuir.9b02094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The existence of magnetic dipolar nanoparticle chains at zero field has been predicted theoretically for decades, but these structures are rarely observed experimentally. A prerequisite is a permanent magnetic moment on the particles forming the chain. Here we report on the observation of magnetic dipolar chains of spherical iron oxide nanoparticles with a diameter of 12.8 nm. The nanoparticles are embedded in an ultrathin polymer film. Due to the high viscosity of the polymer matrix, the dominating aggregation mechanism is driven by dipolar interactions. Smaller iron oxide nanoparticles (8 nm) show no permanent magnetic moment and do not form chains but compact aggregates. Mixed monolayers of iron oxide nanoparticles and polymer at the air-water interface are characterized by Langmuir isotherms and in situ X-ray reflectometry (XRR). The combination of the particles with a polymer leads to a stable polymer nanocomposite film at the air-water interface. XRR experiments show that nanoparticles are immersed in a thin polymer matrix of 2 nm. Using atomic force microscopy (AFM) on Langmuir-Blodgett films, we measure the lateral distribution of particles in the film. An analysis of single structures within transferred films results in fractal dimensions that are in excellent agreement with 2D simulations.
Collapse
Affiliation(s)
- Christian Appel
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| | - Björn Kuttich
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| | - Lukas Stühn
- Physics of Surfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 16 , D-64287 Darmstadt , Germany
| | - Robert W Stark
- Physics of Surfaces , Technische Universität Darmstadt , Alarich-Weiss-Strasse 16 , D-64287 Darmstadt , Germany
| | - Bernd Stühn
- Institute of Condensed Matter Physics , Technische Universität Darmstadt , Hochschulstrasse 8 , D-64289 Darmstadt , Germany
| |
Collapse
|