1
|
Pérez-Chávez NA, Albesa AG, Longo GS. Thermodynamic Theory of Multiresponsive Microgel Swelling. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Néstor A. Pérez-Chávez
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Alberto G. Albesa
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata 1900, Argentina
| |
Collapse
|
2
|
Lu D, Zhu M, Jin J, Saunders BR. Triply-responsive OEG-based microgels and hydrogels: regulation of swelling ratio, volume phase transition temperatures and mechanical properties. Polym Chem 2021. [DOI: 10.1039/d1py00695a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile methods to coordinate swelling ratio, volume-phase transition temperatures and mechanical properties for pH-, thermal-, and cationic-responsive microgels and hydrogels.
Collapse
Affiliation(s)
- Dongdong Lu
- Department of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- Department of Materials
- University of Manchester
- Manchester
- UK
| | - Jing Jin
- Department of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|
3
|
Zhu M, Lu D, Wu S, Lian Q, Wang W, Lyon LA, Wang W, Bártolo P, Saunders BR. Using green emitting pH-responsive nanogels to report environmental changes within hydrogels: a nanoprobe for versatile sensing. NANOSCALE 2019; 11:11484-11495. [PMID: 31066411 DOI: 10.1039/c9nr00989b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Remotely reporting the local environment within hydrogels using inexpensive laboratory techniques has excellent potential to improve our understanding of the nanometer-scale changes that cause macroscopic swelling or deswelling. Whilst photoluminescence (PL) spectroscopy is a popular method for such studies this approach commonly requires bespoke and time-consuming synthesis to attach fluorophores which may leave toxic residues. A promising and more versatile alternative is to use a pre-formed nanogel probe that contains a donor/acceptor pair and then "dope" that into the gel during gel assembly. Here, we introduce green-emitting methacrylic acid-based nanogel probe particles and use them to report the local environment within four different gels as well as stem cells. As the swelling of the nanogel probe changes within the gels the non-radiative energy transfer efficiency is strongly altered. This efficiency change is sensitively reported using the PL ratiometric intensity from the donor and acceptor. We demonstrate that our new nanoprobes can reversibly report gel swelling changes due to five different environmental stimuli. The latter are divalent cations, gel degradation, pH changes, temperature changes and tensile strain. In the latter case, the nanoprobe rendered a nanocomposite gel mechanochromic. The results not only provide new structural insights for hierarchical natural and synthetic gels, but also demonstrate that our new green-fluorescing nanoprobes provide a viable alternative to custom fluorophore labelling for reporting the internal gel environment and its changes.
Collapse
Affiliation(s)
- Mingning Zhu
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
5
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Qian S, Li S, Xiong W, Khan H, Huang J, Zhang W. A new visible light and temperature responsive diblock copolymer. Polym Chem 2019. [DOI: 10.1039/c9py01050e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A visible light and temperature responsive diblock copolymer of poly[6-(2,6,2′,6′-tetramethoxy-4′-oxyazobenzene) hexyl methacrylate]-block-poly(N-isopropylacrylamide) (PmAzo-b-PNIPAM) was synthesized via RAFT polymerization by carefully tuning the polymerization conditions.
Collapse
Affiliation(s)
- Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
7
|
Lu D, Zhu M, Wu S, Wang W, Lian Q, Saunders BR. Triply responsive coumarin-based microgels with remarkably large photo-switchable swelling. Polym Chem 2019. [DOI: 10.1039/c9py00233b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using two different wavelengths of UV light enables remarkably strong photo-switchable swelling of pH- and temperature-responsive microgels and photo-release of doxorubicin.
Collapse
Affiliation(s)
- Dongdong Lu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Mingning Zhu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Shanglin Wu
- School of Materials
- University of Manchester
- Manchester
- UK
| | - Wenkai Wang
- School of Materials
- University of Manchester
- Manchester
- UK
- Beijing National Laboratory for Molecular Sciences (BNLMS)
| | - Qing Lian
- School of Materials
- University of Manchester
- Manchester
- UK
| | | |
Collapse
|