1
|
Zohravi E, Moreno N, Ellero M. Computational mesoscale framework for biological clustering and fractal aggregation. SOFT MATTER 2023; 19:7399-7411. [PMID: 37743687 DOI: 10.1039/d3sm01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Hierarchical clustering due to diffusion and reaction is a widespread occurrence in natural phenomena, displaying fractal behavior with non-integer size scaling. The study of this phenomenon has garnered interest in both biological systems such as morphogenesis and blood clotting, and synthetic systems such as colloids and polymers. The modeling of biological clustering can be difficult, as it can occur on a variety of scales and involve multiple mechanisms, necessitating the use of various methods to capture its behavior. Here, we propose a novel framework, the generalized-mesoscale-clustering (GMC), for the study of complex hierarchical clustering phenomena in biological systems. The GMC framework incorporates the effects of hydrodynamic interactions, bonding, and surface tension, and allows for the analysis of both static and dynamic states of cluster development. The framework is applied to a range of biological clustering mechanisms, with a focus on blood-related clustering from fibrin network formation to platelet aggregation. Our study highlights the importance of a comprehensive characterization of the structural properties of the cluster, including fractal dimension, pore-scale diffusion, initiation time, and consolidation time, in fully understanding the behavior of biological clustering systems. The GMC framework also provides the potential to investigate the temporal evolution and mechanical properties of the clusters by tracking bond density and including hydrodynamic interactions.
Collapse
Affiliation(s)
- Elnaz Zohravi
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
| | - Nicolas Moreno
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
| | - Marco Ellero
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
- IKERBASQUE, Basque Foundation for Science, Calle de Maria Diaz de Haro 3, 48013, Bilbao, Spain
- Zienkiewicz Center for Computational Engineering (ZCCE), Swansea University, Bay Campus, Swansea SA1 8EN, UK
| |
Collapse
|
2
|
Le J, Osmanovic D, Klocke MA, Franco E. Fueling DNA Self-Assembly via Gel-Released Regulators. ACS NANO 2022; 16:16372-16384. [PMID: 36239698 DOI: 10.1021/acsnano.2c05595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of responsive, multicomponent molecular materials requires means to physically separate yet easily couple distinct processes. Here we demonstrate methods to use molecules and reactions loaded into microliter-sized polyacrylamide hydrogels (mini-gels) to control the dynamic self-assembly of DNA nanotubes. We first characterize the UV-mediated release of DNA molecules from mini-gels, changing diffusion rates and minimizing spontaneous leakage of DNA. We then demonstrate that mini-gels can be used as compartments for storage and release of DNA that mediates the assembly or disassembly of DNA nanotubes in a one-pot process and that the speed of DNA release is controlled by the mini-gel porosity. With this approach, we achieve control of assembly and disassembly of nanotubes with distinct kinetics, including a finite delay that is obtained by loading distinct DNA regulators into distinct mini-gels. We finally show that mini-gels can also host and localize enzymatic reactions, by transcribing RNA regulators from synthetic genes loaded in the mini-gels, with diffusion of RNA to the aqueous phase resulting in the activation of self-assembly. Our experimental data are recapitulated by a mathematical model that describes the diffusion of DNA molecules from the gel phase to the aqueous phase in which they control self-assembly of nanotubes. Looking forward, DNA-loaded mini-gels may be further miniaturized and patterned to build more sophisticated storage compartments for use within multicomponent, complex biomolecular materials relevant for biomedical applications and artificial life.
Collapse
Affiliation(s)
- Jenny Le
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles90095, United States
| | - Dino Osmanovic
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles90095, United States
| | - Melissa Ann Klocke
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles90095, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles90095, United States
- Department of Bioengineering, University of California at Los Angeles, Los Angeles90095, United States
| |
Collapse
|
3
|
Transport in the Brain Extracellular Space: Diffusion, but Which Kind? Int J Mol Sci 2022; 23:ijms232012401. [PMID: 36293258 PMCID: PMC9604357 DOI: 10.3390/ijms232012401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of transport of substances in the brain parenchyma have been a hot topic in scientific discussion in the past decade. This discussion was triggered by the proposed glymphatic hypothesis, which assumes a directed flow of cerebral fluid within the parenchyma, in contrast to the previous notion that diffusion is the main mechanism. However, when discussing the issue of “diffusion or non-diffusion”, much less attention was given to the question that diffusion itself can have a different character. In our opinion, some of the recently published results do not fit into the traditional understanding of diffusion. In this regard, we outline the relevant new theoretical approaches on transport processes in complex random media such as concepts of diffusive diffusivity and time-dependent homogenization, which expands the understanding of the forms of transport of substances based on diffusion.
Collapse
|
4
|
Kosztołowicz T, Dutkiewicz A. Composite subdiffusion equation that describes transient subdiffusion. Phys Rev E 2022; 106:044119. [PMID: 36397481 DOI: 10.1103/physreve.106.044119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A composite subdiffusion equation with fractional Caputo time derivative with respect to another function g is used to describe a process of a continuous transition from subdiffusion with parameters α and D_{α} to subdiffusion with parameters β and D_{β}. The parameters are defined by the time evolution of the mean square displacement of diffusing particle σ^{2}(t)=2D_{i}t^{i}/Γ(1+i), i=α,β. The function g controls the process at intermediate times. The composite subdiffusion equation is more general than the ordinary fractional subdiffusion equation with constant parameters; it has potentially wide application in modeling diffusion processes with changing parameters.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Aldona Dutkiewicz
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Alcázar-Cano N, Delgado-Buscalioni R. Hydrodynamics induce superdiffusive jumps of passive tracers along critical paths of random networks and colloidal gels. SOFT MATTER 2022; 18:1941-1954. [PMID: 35191454 DOI: 10.1039/d1sm01713f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a numerical study on the effect of hydrodynamic interactions (HI) on the diffusion of inert point tracer particles in several fixed random structures. As expected, the diffusion is hampered by the extra hydrodynamic friction introduced by the obstacle network. However, a non-trivial effect due to HI appears in the analysis of the van-Hove displacement probability close to the percolation threshold, where tracers diffuse through critical fractal paths. We show that the tracer dynamics can be split up into short and long jumps, the latter being ruled by either exponential or Gaussian van Hove distribution tails. While at short time HI slow down the tracer diffusion, at long times, hydrodynamic interactions with the obstacles increase the probability of longer jumps, which circumvent the traps of the labyrinth more easily. Notably, the relation between the anomalous diffusion exponent and the fractal dimension of the critical (intricate) paths is greater than one, which implies that the long-time (long-jump) diffusion is mildly superdiffuse. A possible reason for such a hastening of the diffusion along the network corridors is the hydrodynamically induced mobility anisotropy, which favours displacements parallel to the walls, an effect which has already been experimentally observed in collagen gels.
Collapse
Affiliation(s)
- Nerea Alcázar-Cano
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid and Condensed Matter Physics Center (IFIMAC), Madrid, Spain.
| | - Rafael Delgado-Buscalioni
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid and Condensed Matter Physics Center (IFIMAC), Madrid, Spain.
| |
Collapse
|
6
|
Abstract
We investigate particle diffusion in a heterogeneous medium limited by a surface where sorption–desorption processes are governed by a kinetic equation. We consider that the dynamics of the particles present in the medium are governed by a diffusion equation with a spatial dependence on the diffusion coefficient, i.e., K(x) = D|x|−η, with −1 < η and D = const, respectively. This system is analyzed in a semi-infinity region, i.e., the system is defined in the interval [0,∞) for an arbitrary initial condition. The solutions are obtained and display anomalous spreading, that is, the dynamics may be viewed as anomalous diffusion, which in turn is related, and hence, the model can be directly applied to several complex systems ranging from biological fluids to electrolytic cells.
Collapse
|
7
|
Kosztołowicz T, Dutkiewicz A. Subdiffusion equation with Caputo fractional derivative with respect to another function. Phys Rev E 2021; 104:014118. [PMID: 34412326 DOI: 10.1103/physreve.104.014118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
We show an application of a subdiffusion equation with Caputo fractional time derivative with respect to another function g to describe subdiffusion in a medium having a structure evolving over time. In this case a continuous transition from subdiffusion to other type of diffusion may occur. The process can be interpreted as "ordinary" subdiffusion with fixed subdiffusion parameter (subdiffusion exponent) α in which timescale is changed by the function g. As an example, we consider the transition from "ordinary" subdiffusion to ultraslow diffusion. The g-subdiffusion process generates the additional aging process superimposed on the "standard" aging generated by "ordinary" subdiffusion. The aging process is analyzed using coefficient of relative aging of g-subdiffusion with respect to "ordinary" subdiffusion. The method of solving the g-subdiffusion equation is also presented.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Aldona Dutkiewicz
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poznańskiego 4, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Kosztołowicz T, Metzler R. Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Phys Rev E 2021; 102:032408. [PMID: 33075880 DOI: 10.1103/physreve.102.032408] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
We propose a model of antibiotic diffusion through a bacterial biofilm when diffusion and/or absorption barriers develop in the biofilm. The idea of this model is: We deduce details of the diffusion process in a medium in which direct experimental study is difficult, based on probing diffusion in external regions. Since a biofilm has a gel-like consistency, we suppose that subdiffusion of particles in the biofilm may occur. To describe this process we use a fractional subdiffusion-absorption equation with an adjustable anomalous diffusion exponent. The boundary conditions at the boundaries of the biofilm are derived by means of a particle random walk model on a discrete lattice leading to an expression involving a fractional time derivative. We show that the temporal evolution of the total amount of substance that has diffused through the biofilm explicitly depends on whether there is antibiotic absorption in the biofilm. This fact is used to experimentally check for antibiotic absorption in the biofilm and if subdiffusion and absorption parameters of the biofilm change over time. We propose a four-stage model of antibiotic diffusion in biofilm based on the following physical characteristics: whether there is absorption of the antibiotic in the biofilm and whether all biofilm parameters remain unchanged over time. The biological interpretation of the stages, in particular their relation with the bacterial defense mechanisms, is discussed. Theoretical results are compared with empirical results of ciprofloxacin diffusion through Pseudomonas aeruginosa biofilm, and ciprofloxacin and gentamicin diffusion through Proteus mirabilis biofilm.
Collapse
Affiliation(s)
- Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Ralf Metzler
- Institute for Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium. PLoS One 2020; 15:e0243003. [PMID: 33270697 PMCID: PMC7714214 DOI: 10.1371/journal.pone.0243003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
We study the experimentally measured ciprofloxacin antibiotic diffusion through a gel-like artificial sputum medium (ASM) mimicking physiological conditions typical for a cystic fibrosis layer, in which regions occupied by Pseudomonas aeruginosa bacteria are present. To quantify the antibiotic diffusion dynamics we employ a phenomenological model using a subdiffusion-absorption equation with a fractional time derivative. This effective equation describes molecular diffusion in a medium structured akin Thompson's plumpudding model; here the 'pudding' background represents the ASM and the 'plums' represent the bacterial biofilm. The pudding is a subdiffusion barrier for antibiotic molecules that can affect bacteria found in plums. For the experimental study we use an interferometric method to determine the time evolution of the amount of antibiotic that has diffused through the biofilm. The theoretical model shows that this function is qualitatively different depending on whether or not absorption of the antibiotic in the biofilm occurs. We show that the process can be divided into three successive stages: (1) only antibiotic subdiffusion with constant biofilm parameters, (2) subdiffusion and absorption of antibiotic molecules with variable biofilm transport parameters, (3) subdiffusion and absorption in the medium but the biofilm parameters are constant again. Stage 2 is interpreted as the appearance of an intensive defence build-up of bacteria against the action of the antibiotic, and in the stage 3 it is likely that the bacteria have been inactivated. Times at which stages change are determined from the experimentally obtained temporal evolution of the amount of antibiotic that has diffused through the ASM with bacteria. Our analysis shows good agreement between experimental and theoretical results and is consistent with the biologically expected biofilm response. We show that an experimental method to study the temporal evolution of the amount of a substance that has diffused through a biofilm is useful in studying the processes occurring in a biofilm. We also show that the complicated biological process of antibiotic diffusion in a biofilm can be described by a fractional subdiffusion-absorption equation with subdiffusion and absorption parameters that change over time.
Collapse
|
10
|
Varadarajan V, Desikan R, Ayappa KG. Assessing the extent of the structural and dynamic modulation of membrane lipids due to pore forming toxins: insights from molecular dynamics simulations. SOFT MATTER 2020; 16:4840-4857. [PMID: 32421131 DOI: 10.1039/d0sm00086h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infections caused by many virulent bacterial strains are triggered by the release of pore forming toxins (PFTs), which form oligomeric transmembrane pore complexes on the target plasma membrane. The spatial extent of the perturbation to the surrounding lipids during pore formation is relatively unexplored. Using all-atom molecular dynamics simulations, we investigate the changes in the structure and dynamics of lipids in a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer in the presence of contrasting PFTs. Cytolysin A (ClyA), an α toxin with its inserted wedge shaped bundle of inserted α helices, induces significant asymmetry across the membrane leaflets in comparison with α hemolysin (AHL), a β toxin. Despite the differences in hydrophobic mismatch and uniquely different topologies of the two oligomers, perturbations to lipid order as reflected in the tilt angle and order parameters and membrane thinning are short ranged, lying within ∼2.5 nm from the periphery of either pore complex, and commensurate with distances typically associated with van der Waals forces. In contrast, the spatial extent of perturbations to the lipid dynamics extends outward to at least 4 nm for both proteins, and the continuous survival probabilities reveal the presence of a tightly bound shell of lipids in this region. Displacement probability distributions show long tails and the distinctly non-Gaussian features reflect the induced dynamic heterogeneity. A detailed profiling of the protein-lipid contacts with tyrosine, tryptophan, lysine and arginine residues shows increased non-polar contacts in the cytoplasmic leaflet for both PFTs, with a higher number of atomic contacts in the case of AHL in the extracellular leaflet due to the mushroom-like topology of the pore complex. The short ranged nature of the perturbations observed in this simple one component membrane suggests inherent plasticity of membrane lipids enabling the recovery of the structure and membrane fluidity even in the presence of these large oligomeric transmembrane protein assemblies. This observation has implications in membrane repair processes such as budding or vesicle fusion events used to mitigate PFT virulence, where the underlying lipid dynamics and fluidity in the vicinity of the pore complex are expected to play an important role.
Collapse
Affiliation(s)
- Vadhana Varadarajan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India.
| | | | | |
Collapse
|
11
|
Roberts RC, Poling-Skutvik R, Conrad JC, Palmer JC. Tracer transport in attractive and repulsive supercooled liquids and glasses. J Chem Phys 2019; 151:194501. [DOI: 10.1063/1.5121851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ryan C. Roberts
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, USA
| |
Collapse
|
12
|
Anderson SJ, Matsuda C, Garamella J, Peddireddy KR, Robertson-Anderson RM, McGorty R. Filament Rigidity Vies with Mesh Size in Determining Anomalous Diffusion in Cytoskeleton. Biomacromolecules 2019; 20:4380-4388. [PMID: 31687803 DOI: 10.1021/acs.biomac.9b01057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The diffusion of microscopic particles through the cell, important to processes such as viral infection, gene delivery, and vesicle transport, is largely controlled by the complex cytoskeletal network, comprised of semiflexible actin filaments and rigid microtubules, that pervades the cytoplasm. By varying the relative concentrations of actin and microtubules, the cytoskeleton can display a host of different structural and dynamic properties that, in turn, impact the diffusion of particles through the composite network. Here, we couple single-particle tracking with differential dynamic microscopy to characterize the transport of microsphere tracers diffusing through composite in vitro networks with varying ratios of actin and microtubules. We analyze multiple complementary metrics for anomalous transport to show that particles exhibit anomalous subdiffusion in all networks, which our data suggest arises from caging by networks. Further, subdiffusive characteristics are markedly more pronounced in actin-rich networks, which exhibit similarly more prominent viscoelastic properties compared to microtubule-rich composites. While the smaller mesh size of actin-rich composites compared to microtubule-rich composites plays an important role in these results, the rigidity of the filaments comprising the network also influences the anomalous characteristics that we observe. Our results suggest that as microtubules in our composites are replaced with actin filaments, the decreasing filament rigidity competes with increasing network connectivity to drive anomalous transport.
Collapse
Affiliation(s)
- Sylas J Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Christelle Matsuda
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Jonathan Garamella
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Karthik Reddy Peddireddy
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| | - Ryan McGorty
- Department of Physics and Biophysics , University of San Diego , San Diego , California 92110 , United States
| |
Collapse
|
13
|
Rodríguez‐Sevilla P, Sanz‐Rodríguez F, Peláez RP, Delgado‐Buscalioni R, Liang L, Liu X, Jaque D. Upconverting Nanorockers for Intracellular Viscosity Measurements During Chemotherapy. ACTA ACUST UNITED AC 2019; 3:e1900082. [DOI: 10.1002/adbi.201900082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
| | - Francisco Sanz‐Rodríguez
- Fluorescence Imaging Group Departamento de Biología Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
- Nanobiology GroupInstituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal. Ctra. De Colmenar Viejo Km. 9100 28034 Madrid Spain
| | - Raúl P. Peláez
- Departamento de Física Teórica de la Materia Condensada Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia Condensada Facultad de CienciasUniversidad Autónoma de Madrid 28049 Madrid Spain
| | - Liangliang Liang
- Department of ChemistryNational University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Xiaogang Liu
- Department of ChemistryNational University of Singapore Science Drive 3 Singapore 117543 Singapore
| | - Daniel Jaque
- Nanobiology GroupInstituto Ramón y Cajal de Investigación Sanitaria Hospital Ramón y Cajal. Ctra. De Colmenar Viejo Km. 9100 28034 Madrid Spain
- Fluorescence Imaging Group Departamento de Fisica de MaterialesUniversidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
14
|
Olivares C, Reis FDAA. Interplay of adsorption and surface mobility in tracer diffusion in porous media. Phys Rev E 2019; 100:022120. [PMID: 31574766 DOI: 10.1103/physreve.100.022120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 11/07/2022]
Abstract
We model the diffusion of a tracer that interacts with the internal surface of a porous medium formed by a packing of solid spheres. The tracer executes a lattice random walk in which hops from surface to bulk sites and hops on the surface have small probabilities compared to hops from bulk sites; those probabilities are related to bulk and surface diffusion coefficients and to a desorption rate. A scaling approach distinguishes three regimes of steady state diffusion, which are confirmed by numerical simulations. If the product of desorption rate and sphere diameter is large, dominant bulk residence is observed and the diffusion coefficient is close to the bulk value. If that product is small and the surface mobility is low, the tracers are adsorbed most of the time but most hops are executed in the bulk. However, for high surface mobility, there is a nontrivial regime of dominant surface displacement, since the connectivity of solid walls allows the tracers to migrate to long distances while they are adsorbed. In this regime, we observe rounded tracer paths on the sphere walls, which are qualitatively similar to those of a recent experiment on polystyrene particle diffusion. The calculated average residence times are proportional to the bulk and surface densities of an equilibrium ensemble of noninteracting tracers, and the relation between those densities sets the adsorption isotherm. Simulations performed with initially uniform (nonequilibrium) distribution of tracers in the pores show other nontrivial results in cases of dominant surface residence: slow increase of the mean-square displacement at short times, since the tracer has not explored a homogeneous medium, and a remarkable slowdown between the first encounter with a solid wall and the first hop from that point. Relations between our results and other models of diffusion and adsorption in porous media are discussed.
Collapse
Affiliation(s)
- Carlos Olivares
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, Niterói, Rio de Janeiro 24210-340, Brazil
| | - F D A Aarão Reis
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, Niterói, Rio de Janeiro 24210-340, Brazil
| |
Collapse
|