1
|
Nguyen D, Wu J, Corrigan P, Li Y. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration. NANOSCALE 2023; 15:16112-16130. [PMID: 37753922 DOI: 10.1039/d3nr00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Janus nanoparticles (NPs) with charged/hydrophobic compartments have garnered attention for their potential antimicrobial activity. These NPs have been shown to disrupt lipid bilayers in experimental studies, yet the underlying mechanisms of this disruption at the particle-membrane interface remain unclear. To address this knowledge gap, the present study conducts a computational investigation to systematically examine the disruption of lipid bilayers induced by amphiphilic Janus NPs. The focus of this study is on the combined effects of the hydrophobicity of the Janus NP, referred to as the Janus balance, defined as the ratio of hydrophilic to hydrophobic surface coverage, and the concentration of charged phospholipids on the interactions between Janus NPs and lipid bilayers. Computational simulations were conducted using a coarse-grained molecular dynamics (MD) approach. The results of these MD simulations reveal that while the area change of the bilayer increases monotonically with the Janus balance, the effect of charged lipid concentration in the membrane is not easy to be predicted. Specifically, it was found that the concentration of negatively charged lipids is directly proportional to the intensity of membrane disruption. Conversely, positively charged lipids have a negligible effect on membrane defects. This study provides molecular insights into the significant role of Janus balance in the disruption of lipid bilayers by Janus NPs and supports the selectivity of Janus NPs for negatively charged lipid membranes. Furthermore, the anisotropic properties of Janus NPs were found to play a crucial role in their ability to disrupt the membrane via the combination of hydrophobic and electrostatic interactions. This finding is validated by testing the current Janus NP design on a bacterial membrane-mimicking model. This computational study may serve as a foundation for further studies aimed at optimizing the properties of Janus NPs for specific antimicrobial applications.
Collapse
Affiliation(s)
- Danh Nguyen
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - James Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Patrick Corrigan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Filbrun SL, Zhao F, Chen K, Huang TX, Yang M, Cheng X, Dong B, Fang N. Imaging Dynamic Processes in Multiple Dimensions and Length Scales. Annu Rev Phys Chem 2022; 73:377-402. [PMID: 35119943 DOI: 10.1146/annurev-physchem-090519-034100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optical microscopy has become an invaluable tool for investigating complex samples. Over the years, many advances to optical microscopes have been made that have allowed us to uncover new insights into the samples studied. Dynamic changes in biological and chemical systems are of utmost importance to study. To probe these samples, multidimensional approaches have been developed to acquire a fuller understanding of the system of interest. These dimensions include the spatial information, such as the three-dimensional coordinates and orientation of the optical probes, and additional chemical and physical properties through combining microscopy with various spectroscopic techniques. In this review, we survey the field of multidimensional microscopy and provide an outlook on the field and challenges that may arise. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Seth L Filbrun
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Fei Zhao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kuangcai Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA.,Imaging Core Facility, Georgia State University, Atlanta, Georgia, USA
| | - Teng-Xiang Huang
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Meek Yang
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Xiaodong Cheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| | - Bin Dong
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, USA;
| | - Ning Fang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen Key Laboratory of Analytical Molecular Nanotechnology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China; ,
| |
Collapse
|
3
|
Lin X, Lin X. Designing amphiphilic Janus nanoparticles with tunable lipid raft affinity via molecular dynamics simulation. Biomater Sci 2021; 9:8249-8258. [PMID: 34757373 DOI: 10.1039/d1bm01364e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the differential interactions among lipids and proteins, the plasma membrane can segregate into a series of functional nanoscale membrane domains ("lipid rafts"), which are essential in multiple biological processes such as signaling transduction, protein trafficking and endocytosis. On the other hand, Janus nanoparticles (NPs) have shown great promise in various biomedical applications due to their asymmetric characteristics and can integrate different surface properties and thus synergetic functions. Hence, in this work, we aim to design an amphiphilic Janus NP to target and regulate lipid rafts via tuning its surface ligand amphiphilicity using coarse-grained molecular dynamics (MD) simulations. Our μs-scale free coarse-grained MD simulations as well as umbrella sampling free energy calculations indicated that the hydrophobicity of the hydrophobic surface ligands not only determined the lateral membrane partitioning thermodynamics of Janus NPs in phase-separated lipid membranes, but also the difficulty in their insertion into different membrane domains of the lipid membrane. These two factors jointly regulated the lipid raft affinity of Janus NPs. Meanwhile, the hydrophilicity of the hydrophilic surface ligands could affect the insertion ability of Janus NPs. Besides, the ultra-small size could ensure the membrane-bound behavior of Janus NPs without disrupting the overall structure and phase separation kinetics of the lipid membrane. These results may provide valuable insights into the design of functional NPs targeting and controllably regulating lipid rafts.
Collapse
Affiliation(s)
- Xiaoqian Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China. .,Shen Yuan Honors College, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Institute of Single Cell Engineering, Key Laboratory of Ministry of Education for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Razza N, Lavino AD, Fadda G, Lairez D, Impagnatiello A, Marchisio D, Sangermano M, Rizza G. Nanoprobes to investigate nonspecific interactions in lipid bilayers: from defect-mediated adhesion to membrane disruption. NANOSCALE ADVANCES 2021; 3:4979-4989. [PMID: 36132337 PMCID: PMC9418973 DOI: 10.1039/d1na00360g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/08/2021] [Indexed: 06/15/2023]
Abstract
When a lipid membrane approaches a material/nanomaterial, nonspecific adhesion may occur. The interactions responsible for nonspecific adhesion can either preserve the membrane integrity or lead to its disruption. Despite the importance of the phenomenon, there is still a lack of clear understanding of how and why nonspecific adhesion may originate different resulting scenarios and how these interaction scenarios can be investigated. This work aims at bridging this gap by investigating the role of the interplay between cationic electrostatic and hydrophobic interactions in modulating the membrane stability during nonspecific adhesion phenomena. Here, the stability of the membrane has been studied employing anisotropic nanoprobes in zwitterionic lipid membranes with the support of coarse-grained molecular dynamics simulations to interpret the experimental observations. Lipid membrane electrical measurements and nanoscale visualization in combination with molecular dynamics simulations revealed the phenomena driving nonspecific adhesion. Any interaction with the lipidic bilayer is defect-mediated involving cationic electrostatically driven lipid extraction and hydrophobically-driven chain protrusion, whose interplay determines the existence of a thermodynamic optimum for the membrane structural integrity. These findings unlock unexplored routes to exploit nonspecific adhesion in lipid membranes. The proposed platform can act as a straightforward probing tool to locally investigate interactions between synthetic materials and lipid membranes for the design of antibacterials, antivirals, and scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Nicolò Razza
- Department of Applied Science and Technology, Politecnico di Torino Torino Italy
| | - Alessio D Lavino
- Department of Applied Science and Technology, Politecnico di Torino Torino Italy
| | - Giulia Fadda
- CSPAT UMR 7244, Université Sorbonne Paris Nord 74 rue Marcel Cachin 93017 Bobigny France
- Laboratoire Léon Brillouin, CNRS, CEA, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex France
| | - Didier Lairez
- Laboratoire Léon Brillouin, CNRS, CEA, Université Paris-Saclay 91191 Gif-sur-Yvette Cedex France
- Laboratoire des Solides Irradiés (LSI), Institut Polytechnique de Paris, CEA/DRF/IRAMIS, CNRS 91128 Palaiseau Cedex France
| | - Andrea Impagnatiello
- Laboratoire des Solides Irradiés (LSI), Institut Polytechnique de Paris, CEA/DRF/IRAMIS, CNRS 91128 Palaiseau Cedex France
| | - Daniele Marchisio
- Department of Applied Science and Technology, Politecnico di Torino Torino Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino Torino Italy
| | - Giancarlo Rizza
- Laboratoire des Solides Irradiés (LSI), Institut Polytechnique de Paris, CEA/DRF/IRAMIS, CNRS 91128 Palaiseau Cedex France
| |
Collapse
|
5
|
Engineering heterogeneity of precision nanoparticles for biomedical delivery and therapy. VIEW 2021. [DOI: 10.1002/viw.20200067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
6
|
UV-Cured Antibacterial Hydrogels Based on PEG and Monodisperse Heterofunctional Bis-MPA Dendrimers. Molecules 2021; 26:molecules26082364. [PMID: 33921687 PMCID: PMC8073803 DOI: 10.3390/molecules26082364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections are one of the major threats to human health due to the raising crisis of antibiotic resistance. Herein, second generation antibacterial heterofunctional dendrimers based on 2,2-bis(methylol)propionic acid were synthesized. The dendrimers possessed six alkenes and 12 ammonium end-groups per molecule and were used to fabricate antibacterial hydrogels together with dithiol-functional polyethylene glycol (mol wt of 2, 6 and 10 kDa) as crosslinkers via thiol-ene chemistry. The network formation can be completed within 10 s upon UV-irradiation as determined by the stabilization of the storage modulus in a rheometer. The hydrogels swelled in aqueous media and could be functionalized with the N-hydroxysuccinimide ester of the dye disperse red 13, which allowed for visually studying the degradation of the hydrogels through the hydrolysis of the ester bonds of the dendritic component. The maximum swelling ratio of the gels was recorded within 4-8 h and the swelling ratios increased with higher molecular weight of the polyethylene glycol crosslinker. The gel formed with 10 kDa polyethylene glycol crosslinker showed the highest swelling ratio of 40 and good mechanical properties, with a storage modulus of 8 kPa. In addition, the hydrogels exhibited good biocompatibility towards both human fibroblasts and mouse monocytes, while showing strong antibacterial activity against both gram-positive and gram-negative bacteria.
Collapse
|
7
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
8
|
Wiemann JT, Shen Z, Ye H, Li Y, Yu Y. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. NANOSCALE 2020; 12:20326-20336. [PMID: 33006360 DOI: 10.1039/d0nr05355d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Building upon our previous studies on interactions of amphiphilic Janus nanoparticles with glass-supported lipid bilayers, we study here how these Janus nanoparticles perturb the structural integrity and induce shape instabilities of membranes of giant unilamellar vesicles (GUVs). We show that 100 nm amphiphilic Janus nanoparticles disrupt GUV membranes at a threshold particle concentration similar to that in supported lipid bilayers, but cause drastically different membrane deformations, including membrane wrinkling, protrusion, poration, and even collapse of entire vesicles. By combining experiments with molecular simulations, we reveal how Janus nanoparticles alter local membrane curvature and collectively compress the membrane to induce shape transformation of vesicles. Our study demonstrates that amphiphilic Janus nanoparticles disrupt vesicle membranes differently and more effectively than uniform amphiphilic particles.
Collapse
Affiliation(s)
- Jared T Wiemann
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Ying Li
- Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA.
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
9
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
10
|
Phuong PTM, Won HJ, Robby AI, Kim SG, Im GB, Bhang SH, Lee G, Park SY. NIR-vis-Induced pH-Sensitive TiO 2 Immobilized Carbon Dot for Controllable Membrane-Nuclei Targeting and Photothermal Therapy of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37929-37942. [PMID: 32846494 DOI: 10.1021/acsami.0c11979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study investigated a selective and sensitive theragnosis system for the specific targeting of the membrane and nuclei based on visible-light and pH-responsive TiO2-integrated cross-linked carbon dot (C-CD/TiO2) for tumor detection and controllable photothermal therapy. The cross-linking system was formed by boronate ester linkages between the TiO2-immobilized Dopa-decyl (D-CD) and zwitterionic-formed CD (Z-CD) for nuclear targeting, which showed fluorescence "off" at physiological pH. The fluorescence recovered to the "on" state in acidic cancer cells owing to cleavages of the boronate ester bonds, resulting in the disruption of the Förster resonance energy transfer that generated different CDs useful for tumor-selective biosensors and therapy. D-CD, which is hydrophobic, can penetrate the hydrophobic sites of the cell membrane; it caused a loss in the hydrophobicity of these sites after visible-light irradiation. This was achieved by the photocatalytic activity of the TiO2 modulating energy bandgap, whereas the Z-CD targeted the nucleus, as confirmed by merged confocal microscopy images. D-CD augmented by photothermal heat also exhibited selective anticancer activity in the acidic tumor condition but showed only minimal effects at a normal site at pH 7.4. After C-CD/TiO2 injection to an in vivo tumor model, C-CD/TiO2 efficiently ablated tumors under NIR light irradiation. The C-CD/TiO2 group showed up-regulation of the pro-apoptotic markers such as P53 and BAX in tumor. This material exhibited its potential as a theragnostic sensor with excellent biocompatibility, high sensitivity, selective imaging, and direct anticancer activity via photothermal therapy.
Collapse
Affiliation(s)
- Pham Thi My Phuong
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Hyun Jeong Won
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Akhmad Irhas Robby
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gibaek Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| |
Collapse
|
11
|
Ou L, Corradi V, Tieleman DP, Liang Q. Atomistic Simulations on Interactions between Amphiphilic Janus Nanoparticles and Lipid Bilayers: Effects of Lipid Ordering and Leaflet Asymmetry. J Phys Chem B 2020; 124:4466-4475. [DOI: 10.1021/acs.jpcb.9b11989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luping Ou
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Valentina Corradi
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics and Department of Physics, Zhejiang Normal University, Jinhua 321004, P. R. China
| |
Collapse
|
12
|
Podolska MJ, Barras A, Alexiou C, Frey B, Gaipl U, Boukherroub R, Szunerits S, Janko C, Muñoz LE. Graphene Oxide Nanosheets for Localized Hyperthermia-Physicochemical Characterization, Biocompatibility, and Induction of Tumor Cell Death. Cells 2020; 9:E776. [PMID: 32209981 PMCID: PMC7140890 DOI: 10.3390/cells9030776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The main goals of cancer treatment are not only to eradicate the tumor itself but also to elicit a specific immune response that overcomes the resistance of tumor cells against chemo- and radiotherapies. Hyperthermia was demonstrated to chemo- and radio-sensitize cancerous cells. Many reports have confirmed the immunostimulatory effect of such multi-modal routines. METHODS We evaluated the interaction of graphene oxide (GO) nanosheets; its derivatives reduced GO and PEGylated rGO, with components of peripheral blood and evaluated its thermal conductivity to induce cell death by localized hyperthermia. RESULTS We confirmed the sterility and biocompatibility of the graphene nanomaterials and demonstrated that hyperthermia applied alone or in the combination with radiotherapy induced much more cell death in tumor cells than irradiation alone. Cell death was confirmed by the release of lactate dehydrogenase from dead and dying tumor cells. CONCLUSION Biocompatible GO and its derivatives can be successfully used in graphene-induced hyperthermia to elicit tumor cell death.
Collapse
Affiliation(s)
- Malgorzata J. Podolska
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.A.); (C.J.)
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany; (B.F.); (U.G.)
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany; (B.F.); (U.G.)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France; (A.B.); (R.B.); (S.S.)
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (C.A.); (C.J.)
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 90154 Erlangen, Germany;
| |
Collapse
|
13
|
Bewersdorff T, Gruber A, Eravci M, Dumbani M, Klinger D, Haase A. Amphiphilic nanogels: influence of surface hydrophobicity on protein corona, biocompatibility and cellular uptake. Int J Nanomedicine 2019; 14:7861-7878. [PMID: 31576128 PMCID: PMC6769055 DOI: 10.2147/ijn.s215935] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/20/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Nanogels (NGs) are promising drug delivery tools but are typically limited to hydrophilic drugs. Many potential new drugs are hydrophobic. Our study systematically investigates amphiphilic NGs with varying hydrophobicity, but similar colloidal features to ensure comparability. The amphiphilic NGs used in this experiment consist of a hydrophilic polymer network with randomly distributed hydrophobic groups. For the synthesis we used a new synthetic platform approach. Their amphiphilic character allows the encapsulation of hydrophobic drugs. Importantly, the hydrophilic/hydrophobic balance determines drug loading and biological interactions. In particular, protein adsorption to NG surfaces is dependent on hydrophobicity and critically determines circulation time. Our study investigates how network hydrophobicity influences protein binding, biocompatibility and cellular uptake. METHODS Biocompatibility of the NGs was examined by WST-1 assay in monocytic-like THP-1 cells. Serum protein corona formation was investigated using dynamic light scattering and two-dimensional gel electrophoresis. Proteins were identified by liquid chromatography-tandem mass spectrometry. In addition, cellular uptake was analyzed via flow cytometry. RESULTS All NGs were highly biocompatible. The protein binding patterns for the two most hydrophobic NGs were very similar to each other but clearly different from the hydrophilic ones. Overall, protein binding was increased with increasing hydrophobicity, resulting in increased cellular uptake. CONCLUSION Our study supports the establishment of structure-property relationships and contributes to the accurate balance between maximum loading capacity with low protein binding, optimal biological half-life and good biocompatibility. This is an important step to derive design principles of amphiphilic NGs to be applied as drug delivery vehicles.
Collapse
Affiliation(s)
- Tony Bewersdorff
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Alexandra Gruber
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical Chemistry), Berlin, Germany
| | - Murat Eravci
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Malti Dumbani
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| | - Daniel Klinger
- Freie Universität Berlin, Institute of Pharmacy (Pharmaceutical Chemistry), Berlin, Germany
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Berlin, Germany
| |
Collapse
|