1
|
da Silva ISP, Bordini EAF, Bronze-Uhle ES, de Stuani V, Costa MC, de Carvalho LAM, Cassiano FB, de Azevedo Silva LJ, Borges AFS, Soares DG. Photo-crosslinkable hydrogel incorporated with bone matrix particles for advancements in dentin tissue engineering. J Biomed Mater Res A 2024; 112:2273-2288. [PMID: 39015005 DOI: 10.1002/jbm.a.37777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
The objective of this study was to create injectable photo-crosslinkable biomaterials, using gelatin methacryloyl (GelMA) hydrogel, combined with a decellularized bone matrix (BMdc) and a deproteinized (BMdp) bovine bone matrix. These were intended to serve as bioactive scaffolds for dentin regeneration. The parameters for GelMA hydrogel fabrication were initially selected, followed by the incorporation of BMdc and BMdp at a 1% (w/v) ratio. Nano-hydroxyapatite (nHA) was also included as a control. A physicochemical characterization was conducted, with FTIR analysis indicating that the mineral phase was complexed with GelMA, and BMdc was chemically bonded to the amide groups of gelatin. The porous structure was preserved post-BMdc incorporation, with bone particles incorporated alongside the pores. Conversely, the mineral phase was situated inside the pore opening, affecting the degree of porosity. The mineral phase did not modify the degradability of GelMA, even under conditions of type I collagenase-mediated enzymatic challenge, allowing hydrogel injection and increased mechanical strength. Subsequently, human dental pulp cells (HDPCs) were seeded onto the hydrogels. The cells remained viable and proliferative, irrespective of the GelMA composition. All mineral phases resulted in a significant increase in alkaline phosphatase activity and mineralized matrix deposition. However, GelMA-BMdc exhibited higher cell expression values, significantly surpassing those of all other formulations. In conclusion, our results showed that GelMA-BMdc produced a porous and stable hydrogel, capable of enhancing odontoblastic differentiation and mineral deposition when in contact with HDPCs, thereby showing potential for dentin regeneration.
Collapse
Affiliation(s)
- Isabela Sanches Pompeo da Silva
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Ester Alves Ferreira Bordini
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Erika Soares Bronze-Uhle
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Vitor de Stuani
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Matheus Castro Costa
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | | | - Fernanda Balestrero Cassiano
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Lucas José de Azevedo Silva
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Ana Flávia Sanches Borges
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| | - Diana Gabriela Soares
- Department of Operative Dentistry, Endodontics, and Dental Materials, School of Dentistry, University of São Paulo-USP, Bauru, Brazil
| |
Collapse
|
2
|
Xu Y, Bei Z, Li M, Ye L, Chu B, Zhao Y, Qian Z. Biomedical application of materials for external auditory canal: History, challenges, and clinical prospects. Bioact Mater 2024; 39:317-335. [PMID: 38827173 PMCID: PMC11139775 DOI: 10.1016/j.bioactmat.2024.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024] Open
Abstract
Biomaterials play an integral role in treatment of external auditory canal (EAC) diseases. Regarding the special anatomic structure and physiological characteristics of EAC, careful selection of applicable biomaterials was essential step towards effective management of EAC conditions. The bioactive materials can provide reasonable biocompatibility, reduce risk of host pro-inflammatory response and immune rejection, and promote the healing process. In therapeutic procedure, biomaterials were employed for covering or packing the wound, protection of the damaged tissue, and maintaining of normal structures and functions of the EAC. Therefore, understanding and application of biomaterials was key to obtaining great rehabilitation in therapy of EAC diseases. In clinical practice, biomaterials were recognized as an important part in the treatment of different EAC diseases. The choice of biomaterials was distinct according to the requirements of various diseases. As a result, awareness of property regarding different biomaterials was fundamental for appropriate selection of therapeutic substances in different EAC diseases. In this review, we firstly introduced the characteristics of EAC structures and physiology, and EAC pathologies were summarized secondarily. From the viewpoint of biomaterials, the different materials applied to individual diseases were outlined in categories. Besides, the underlying future of therapeutic EAC biomaterials was discussed.
Collapse
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Li
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingyang Chu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otorhinolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Mendes AX, Caballero Aguilar L, do Nascimento AT, Duchi S, Charnley M, Nisbet DR, Quigley AF, Kapsa RMI, Moraes Silva S, Moulton SE. Integrating Graphene Oxide-Hydrogels and Electrical Stimulation for Controlled Neurotrophic Factor Encapsulation: A Promising Approach for Efficient Nerve Tissue Regeneration. ACS APPLIED BIO MATERIALS 2024; 7:4175-4192. [PMID: 38830774 DOI: 10.1021/acsabm.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.
Collapse
Affiliation(s)
- Alexandre Xavier Mendes
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith Caballero Aguilar
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Adriana Teixeira do Nascimento
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Department of Surgery, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Mirren Charnley
- Centre for Optical Sciences and Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000 Australia
| | - David R Nisbet
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- The Graeme Clark Institute, Biomedical Engineering Department, Melbourne University, Melbourne, Victoria 3065, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anita F Quigley
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Robert M I Kapsa
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- School of Electrical and Biomedical Engineering, RMIT University, Melbourne, Victoria 3001, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Saimon Moraes Silva
- Department of Biochemistry and Chemistry, Biomedical and Environmental Sensor Technology Centre, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| |
Collapse
|
4
|
Su Z, Guo C, Gui X, Wu L, Zhang B, Qin Y, Tan Z, Zhou C, Wei W, Fan Y, Zhang X. 3D printing of customized bioceramics for promoting bone tissue regeneration by regulating sympathetic nerve behavior. J Mater Chem B 2024; 12:4217-4231. [PMID: 38596904 DOI: 10.1039/d4tb00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Numerous studies have shown that there are multiple neural activities involved in the process of bone resorption and bone regeneration, and promoting osteogenesis by promoting neural network reconstruction is an effective strategy for repairing critical size bone defects. However, traumatic bone defects often cause activation of the sympathetic nervous system (SNS) in the damaged area, releasing excess catecholamines (CAs), resulting in a decrease in the rate of bone formation. Herein, a 3D-printed scaffold loaded with propranolol (PRN) is proposed to reduce CA concentrations in bone defect areas and promote bone regeneration through drug release. For this purpose, PRN-loaded methacrylated gelatin (GelMA) microspheres were mixed with low-concentration GelMA and perfused into a 3D-printed porous hydroxyapatite (HAp) scaffold. By releasing PRN, which can block β-adrenergic receptors, it hinders the activation of sympathetic nerves and inhibits the release of excess CA by the SNS. At the same time, the composite scaffold recruits bone marrow mesenchymal stem cells (BMSCs) and promotes the differentiation of BMSCs in the direction of osteoblasts, which effectively promotes bone regeneration in the rabbit femoral condyle defect model. The results of the study showed that the release of PRN from the composite scaffold could effectively hinder the activation of sympathetic nerves and promote bone regeneration, providing a new strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Zixuan Su
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Gui
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Lina Wu
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Boqing Zhang
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Wei Wei
- Department of Emergency, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yujiang Fan
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
6
|
Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int J Biol Macromol 2023; 253:126611. [PMID: 37652329 DOI: 10.1016/j.ijbiomac.2023.126611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
There are many studies on specific macromolecules and their contributions to tissue repair. Macromolecules have supporting and protective effects in organisms and can help regrow, reshape, and promote self-repair and regeneration of damaged tissues. Macromolecules, such as proteins, nucleic acids, and polysaccharides, can be constructed into hydrogels for the preparation of slow-release drug agents, carriers for cell culture, and platforms for gene delivery. Hydrogels and microspheres are fabricated by chemical crosslinking or mixed co-deposition often used as scaffolds, drug carriers, or cell culture matrix, provide proper mechanical support and nutrient delivery, a well-conditioned environment that to promote the regeneration and repair of damaged tissues. This review provides a comprehensive overview of recent developments in the construction of macromolecules into hydrogels and microspheres based on the proteins, nucleic acids, polysaccharides and other polymer and their application in tissue repair. We then discuss the latest research trends regarding the advantages and disadvantages of these composites in repair tissue. Further, we examine the applications of microspheres/hydrogels in different tissue repairs, such as skin tissue, cartilage, tumor tissue, synovial, nerve tissue, and cardiac repair. The review closes by highlighting the challenges and prospects of microspheres/hydrogels composites.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
7
|
Hydrogels to Support Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells. Brain Sci 2022; 12:brainsci12121620. [PMID: 36552081 PMCID: PMC9775591 DOI: 10.3390/brainsci12121620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Retinal pigment epithelial (RPE) cells are highly specialized neural cells with several functions essential for vision. Progressive deterioration of RPE cells in elderly individuals can result in visual impairment and, ultimately, blinding disease. While human embryonic stem cell-derived RPE cell (hESC-RPE) growth conditions are generally harsher than those of cell lines, the subretinal transplantation of hESC-RPE is being clinically explored as a strategy to recover the damaged retina and improve vision. The cell-adhesion ability of the support is required for RPE transplantation, where pre-polarized cells can maintain specific functions on the scaffold. This work examined four typical biodegradable hydrogels as supports for hESC-RPE growth. METHODS Four biodegradable hydrogels were examined: gelatin methacryloyl (GelMA), hyaluronic acid methacryloyl (HAMA), alginate, and fibrin hydrogels. ARPE-19 and hESC-RPE cells were seeded onto the hydrogels separately, and the ability of these supports to facilitate adherence, proliferation, and homogeneous distribution of differentiated hESC-RPE cells was investigated. Furthermore, the hydrogel's subretinal bio-compatibility was assessed in vivo. RESULTS We showed that ARPE-19 and hESC-RPE cells adhered and proliferated only on the fibrin support. The monolayer formed when cells reached confluency, demonstrating the polygonal semblance, and revealing actin filaments that moved along the cytoplasm. The expression of tight junction proteins at cell interfaces on the 14th day of seeding demonstrated the barrier function of epithelial cells on polymeric surfaces and the interaction between cells. Moreover, the expression of proteins crucial for retinal functions and matrix production was positively affected by fibrin, with an increment of PEDF. Our in vivo investigation with fibrin hydrogels revealed high short-term subretinal biocompatibility. CONCLUSIONS The research of stem cell-based cell therapy for retinal degenerative diseases is more complicated than that of cell lines. Our results showed that fibrin is a suitable scaffold for hESC-RPE transplantation, which could be a new grafting material for tissue engineering RPE cells.
Collapse
|
8
|
Burkholder-Wenger AC, Golzar H, Wu Y, Tang XS. Development of a Hybrid Nanoink for 3D Bioprinting of Heterogeneous Tumor Models. ACS Biomater Sci Eng 2022; 8:777-785. [PMID: 35045252 DOI: 10.1021/acsbiomaterials.1c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the rapid progress in applying three-dimensional (3D) printing in the field of tissue engineering, fabrication of heterogeneous and complex 3D tumor models remains a challenge. In this study, we report a hybrid nanoink (AGC) composed of alginate, gelatin methacryloyl (GelMA), and cellulose nanocrystal (CNC), designed for multinozzle microextrusion 3D printing of tumor models. Our results show that the ink consisting of 2 wt % alginate, 4 wt % GelMA, and 6 wt % cellulose nanocrystals (AGC246) possesses a superior shear-thinning property and little hysteresis in viscosity recovery. The fabrication of a colorectal cancer (CRC) model is demonstrated by printing a 3D topological substrate with AGC246 and then seeding/printing endothelial (EA-hy 926) and colorectal carcinoma (HCT 116) cells on top. Direct seeding of cells by dropping a cell suspension onto the 3D substrate with distinctive topological features (villi and trenches) deemed inadequate in either creating a monolayer of endothelial cells or precise positioning of cancer cell clusters, even with surface treatment to promote cell adhesion. In contrast, 3D biopinting of a CRC model using cell-laden AGC153, coupled with dual ultraviolet (UV) and ionic cross-linking, is shown to be successful. Hence, this study brings advancements in 3D bioprinting technology through innovative material and methodology designs, which could enable the fabrication of complex in vitro models for both fundamental studies of disease processes and applications in drug screening.
Collapse
Affiliation(s)
- Andrew C Burkholder-Wenger
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yun Wu
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Wang Y, Wen F, Yao X, Zeng L, Wu J, He Q, Li H, Fang L. Hybrid Hydrogel Composed of Hyaluronic Acid, Gelatin, and Extracellular Cartilage Matrix for Perforated TM Repair. Front Bioeng Biotechnol 2022; 9:811652. [PMID: 35004660 PMCID: PMC8741272 DOI: 10.3389/fbioe.2021.811652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
A novel series of composite hydrogels, built from the three components 1), hyaluronic acid methacryloyl (HAMA); 2), gelatin methacryloyl (GelMA), and 3), extracellular cartilage matrix (ECM), was prepared and studied regarding the possible utility in the surgical repair of damaged (perforated) tympanic membrane (TM). Noteworthy is component 3), which was harvested from the ribs of α-1,3-galactosidyltransferase-knockout (α-1,3 GalT-KO) pigs. The absence of α-1,3-galactosyl glycoprotein is hypothesized to prevent rejection due to foreign-body immunogenicity. The composite hydrogels were characterized by various aspects, using a variety of physicochemical techniques: aqueous swelling, structural degradation, behavior under compression, and morphology, e.g., in vitro biocompatibility was assessed by the CCK-8 and live–dead assays and through cytoskeleton staining/microscopy. Alcian blue staining and real-time PCR (RT-PCR) were performed to examine the chondrogenic induction potential of the hydrogels. Moreover, a rat TM defect model was used to evaluate the in vivo performance of the hydrogels in this particular application. Taken together, the results from this study are surprising and promising. Much further development work will be required to make the material ready for surgical use.
Collapse
Affiliation(s)
- Yili Wang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Wen
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xueting Yao
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lulu Zeng
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaming Wu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinhong He
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huaqiong Li
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Lian Fang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Gao Y, Ma Q, Cao J, Wang Y, Yang X, Xu Q, Liang Q, Sun Y. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications. Int J Pharm 2021; 600:120465. [PMID: 33711469 DOI: 10.1016/j.ijpharm.2021.120465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
Chitosan-based biomaterials has shown great advantages in a broad range of applications, including drug delivery, clinical diagnosis, cell culture and tissue engineering. However, due to the lack of control over the fabrication processes by conventional techniques, the wide application of chitosan-based biomaterials has been hampered. Recently, microfluidics has been demonstrated as one of the most promising platforms to fabricate high-performance chitosan-based multifunctional materials with monodisperse size distribution and accurately controlled morphology and microstructures, which show great promising for biomedical applications. Here, we review recent progress of the fabrication of chitosan-based biomaterials with different structures and integrated functions by microfluidic technology. A comprehensive and in-depth depiction of critical microfluidic formation mechanism and process of various chitosan-based materials are first interpreted, with particular descriptions about the microfluidic-mediated control over the morphology and microstructures. Afterwards, recently emerging representative applications of chitosan-based multifunctional materials in various fields, are systematically summarized. Finally, the conclusions and perspectives on further advancing the microfluidic-aided chitosan-based multifunctional materials toward potential and versatile development for fundamental researches and biomedicine are proposed.
Collapse
Affiliation(s)
- Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yiwen Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xin Yang
- Hangzhou Huadong Medicine Group Biotechnology Institute Company, Hangzhou, China
| | - Qiulong Xu
- Jiangsu Seven Continent Institute of Green Technology, Suzhou, China
| | - Qing Liang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Caballero Aguilar LM, Duchi S, Onofrillo C, O'Connell CD, Di Bella C, Moulton SE. Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules. J Colloid Interface Sci 2020; 587:240-251. [PMID: 33360897 DOI: 10.1016/j.jcis.2020.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022]
Abstract
Drug delivery systems such as microspheres have shown potential in releasing biologicals effectively for tissue engineering applications. Microfluidic systems are especially attractive for generating microspheres as they produce microspheres of controlled-size and in low volumes, using micro-emulsion processes. However, the flow rate dependency on the encapsulation of molecules at a microscale is poorly understood. In particular, the flow rate and pressure parameters might influence the droplet formation and drug encapsulation efficiency. We evaluated the parameters within a two-reagent flow focusing microfluidic chip under continuous formation of hydrogel particles using a flourinated oil and an ionic crosslinkable alginate hydrogel. Fluorescein isothiocyanate-dextran sulfate (FITC-dextran sulfate MW: 40 kDa) was used to evaluate the variation of the encapsulation efficiency with the flow parameters, optimizing droplets and microsphere formation. The ideal flow rates allowing for maximum encapsulation efficiency, were utilised to form bioactive microspheres by delivering transforming growth factor beta-3 (TGFβ-3) in cell culture media. Finally, we evaluated the potential of microfluidic-formed microspheres to be included within biological environments. The biocompatibility of the microspheres was tested over 28 days using adult human mesenchymal stem cells (hMSCs). The release profile of the growth factors from microspheres showed a sustained release in media, after an initial burst, up to 30 days. The metabolic activity of the cells cultured in the presence of the microspheres was similar to controls, supporting the biocompatibility of this approach. The fine-tuned parameters for alginate hydrogel to form microspheres have potential in encapsulating and preserving functional structure of bioactive agents for future tissue engineering applications.
Collapse
Affiliation(s)
- Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria 3122, Australia; BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia
| | - Serena Duchi
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, VIC, Australia; ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Carmine Onofrillo
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, VIC, Australia; ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia
| | - Cathal D O'Connell
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia; School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Claudia Di Bella
- BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, VIC, Australia; Department of Medicine, St Vincent's Hospital Melbourne, 3065 Fitzroy, VIC, Australia
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Victoria 3122, Australia; BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia; Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
12
|
Sun D, Zhang Z, Chen M, Zhang Y, Amagat J, Kang S, Zheng Y, Hu B, Chen M. Co-Immobilization of Ce6 Sono/Photosensitizer and Protonated Graphitic Carbon Nitride on PCL/Gelation Fibrous Scaffolds for Combined Sono-Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40728-40739. [PMID: 32794726 DOI: 10.1021/acsami.0c08446] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming at developing a moderate and efficient sono-photodynamic therapy for breast cancer, tissue engineering scaffolds may provide an easy and efficient strategy to eliminate serious side effects in conventional surgery or chemotherapy, and thus, they are highly desired. However, the development of ideal sono-photodynamic therapeutic scaffolds is always hindered by the poor stability and incompatibility between the different biomaterial components. Herein, the Food and Drug Administration (FDA)-approved sono/photosensitizer Chlorin e6 (Ce6) was successfully and tightly incorporated into electrospun polycaprolactone/gelatin (PG) scaffolds via positively charged protonated g-C3N4 nanosheets (pCN). The PG fibers were precoated with graphene oxide (GO) to enable the assembly of pCN on the surface through electrostatic interactions. The Ce6@pCN-GO-PG composite scaffolds exhibited good cytocompatibility and excellent sono-photodynamic activity, leading to distinctly boosted reactive oxygen species (ROS) generation and a 95.8% inactivation rate of breast cancer cells through a synergistic sono-photodynamic process triggered by an 808 nm laser and 1 MHz ultrasound (US) excitation, within the clinical therapeutic dose. The as-developed scaffolds with unique ultrasound cavitation therapeutic effects can be used not only for complete eradication of tumor cells after surgery but also as a cell behavior observation platform of sono-photodynamic cancer therapy.
Collapse
Affiliation(s)
- Di Sun
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zhongyang Zhang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, P. R. China
| | - Mengya Chen
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China
| | - Yanping Zhang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jordi Amagat
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Shifei Kang
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
| | - Bing Hu
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital & Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P. R. China
| | - Menglin Chen
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Sino-Danish Center for Education and Research, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020; 9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Indexed: 01/15/2023]
Abstract
Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
- College of TextilesDonghua University Songjiang District Shanghai 201620 China
| |
Collapse
|
14
|
Qin M, Jin J, Saiding Q, Xiang Y, Wang Y, Sousa F, Sarmento B, Cui W, Chen X. In situ inflammatory-regulated drug-loaded hydrogels for promoting pelvic floor repair. J Control Release 2020; 322:375-389. [DOI: 10.1016/j.jconrel.2020.03.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
|
15
|
Lee C, O'Connell CD, Onofrillo C, Choong PFM, Di Bella C, Duchi S. Human articular cartilage repair: Sources and detection of cytotoxicity and genotoxicity in photo-crosslinkable hydrogel bioscaffolds. Stem Cells Transl Med 2020; 9:302-315. [PMID: 31769213 PMCID: PMC7031631 DOI: 10.1002/sctm.19-0192] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/03/2019] [Accepted: 10/27/2019] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional biofabrication using photo-crosslinkable hydrogel bioscaffolds has the potential to revolutionize the need for transplants and implants in joints, with articular cartilage being an early target tissue. However, to successfully translate these approaches to clinical practice, several barriers must be overcome. In particular, the photo-crosslinking process may impact on cell viability and DNA integrity, and consequently on chondrogenic differentiation. In this review, we primarily explore the specific sources of cellular cytotoxicity and genotoxicity inherent to the photo-crosslinking reaction, the methods to analyze cell death, cell metabolism, and DNA damage within the bioscaffolds, and the possible strategies to overcome these detrimental effects.
Collapse
Affiliation(s)
- Cheryl Lee
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
| | - Cathal D. O'Connell
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| | - Carmine Onofrillo
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| | - Peter F. M. Choong
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
- Department of OrthopaedicsSt Vincent's HospitalFitzroyVictoriaAustralia
| | - Claudia Di Bella
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
- Department of OrthopaedicsSt Vincent's HospitalFitzroyVictoriaAustralia
| | - Serena Duchi
- Department of SurgeryUniversity of Melbourne, St Vincent's HospitalFitzroyVictoriaAustralia
- BioFab3D, Aikenhead Centre for Medical DiscoverySt Vincent's HospitalFitzroyVictoriaAustralia
| |
Collapse
|
16
|
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm 2019; 569:118627. [PMID: 31421199 PMCID: PMC7073469 DOI: 10.1016/j.ijpharm.2019.118627] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
Polymers are the backbone of pharmaceutical drug delivery. There are several polymers with varying properties available today for use in different pharmaceutical applications. Alginate is widely used in biomedical research due to its attractive features such as biocompatibility, biodegradability, inertness, low cost, and ease of production and formulation. Encapsulation of therapeutic agents in alginate/alginate complex microspheres protects them from environmental stresses, including the acidic environment in the gastro-intestinal tract (GIT) and enzymatic degradation, and allows targeted and sustained delivery of the agents. Microencapsulation is playing an increasingly important role in drug delivery as evidenced by the recent surge in research articles on the use of alginate in the delivery of small molecules, cells, bacteria, proteins, vaccines, and for tissue engineering applications. Formulation of these alginate microspheres (AMS) are commonly achieved by conventional external gelation method using various instrumental manipulation such as vortexing, homogenization, ultrasonication or spray drying, and each method affects the overall particle characteristics. In this review, an inclusive summary of the currently available methods for the formulation of AMS, its recent use in the encapsulation and delivery of therapeutics, and future outlook will be discussed.
Collapse
Affiliation(s)
- Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Rachel Movsas
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ugene Sano
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|