1
|
Kolar-Hofer P, Zampini G, Derntl CG, Soprano E, Polo E, Del Pino P, Kereyeva N, Eggeling M, Breth L, Haslinger MJ, Mühlberger M, Ertl P, Shoshi A, Hartbaum J, Jurisch M, Pelaz B, Schrittwieser S. Fabrication of nanoparticles with precisely controllable plasmonic properties as tools for biomedical applications. NANOSCALE 2025; 17:4423-4438. [PMID: 39812452 PMCID: PMC11734588 DOI: 10.1039/d4nr02677b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025]
Abstract
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine. However, their widespread adoption is hindered due to challenges in consistent and accurate nanoparticle fabrication and functionality as well as due to nanotoxicological concerns, including cell damage, DNA damage, and unregulated cell signaling. In this study, we present a fabrication approach using nanoimprint lithography in combination with thin film deposition which yields highly homogenous nanoparticles in size, shape and optical properties with standard deviations of the main geometry parameters of less than 5% batch-to-batch variation. The measured optical properties closely match performed simulations, indicating that pre-experimental modelling can effectively guide the design of nanoparticles with tailored optical properties. Our approach also enables nanoparticle transfer to solution. Particularly, we show that the surface coating with a PEG polymer shell ensures stable dispersions in buffer solutions and complex cell media for at least 7 days. Furthermore, our in vitro experiments demonstrate that these nanoparticles are internalized by cells via endocytosis, exhibit good biocompatibility, and show minor cytotoxicity, as evidenced by high cell viability. In the future, our high-precision nanoparticle fabrication method together with tunable surface plasmon resonance and reduced nanotoxicity will offer the possibility to replace conventional nanomaterials for biomedical applications that make use of an optical response at precise wavelengths. This includes the use of the nanoparticles as contrast agents for imaging, as probes for targeted photothermal cancer therapy, as carriers for controlled drug delivery, or as probes for sensing applications based on optical detection principles.
Collapse
Affiliation(s)
- Pauline Kolar-Hofer
- AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
| | - Giulia Zampini
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Enrica Soprano
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nurgul Kereyeva
- AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
| | - Moritz Eggeling
- AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
| | - Leoni Breth
- Department for Integrated Sensor Systems, University for Continuing Education Krems, 2700 Wr. Neustadt, Austria
| | | | | | - Peter Ertl
- Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Technische Universitaet Wien (TUW), Vienna, Austria
| | - Astrit Shoshi
- Institut für Mikroelektronik Stuttgart (IMS CHIPS), Allmandring 30a, 70569 Stuttgart, Germany
| | - Julian Hartbaum
- Institut für Mikroelektronik Stuttgart (IMS CHIPS), Allmandring 30a, 70569 Stuttgart, Germany
| | - Michael Jurisch
- Institut für Mikroelektronik Stuttgart (IMS CHIPS), Allmandring 30a, 70569 Stuttgart, Germany
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Stefan Schrittwieser
- AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
| |
Collapse
|
2
|
Pandit JJ, Yassin AAK, Martin CU, Saux GL, Porgador A, Schvartzman M. Effect of binary mechanical environment on T cell function. Acta Biomater 2025:S1742-7061(25)00114-X. [PMID: 39952341 DOI: 10.1016/j.actbio.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/04/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
T cells, key players in the immune system, recognize antigens via T-cell receptors (TCRs) and require additional costimulatory and cytokine signals for full activation. Beyond biochemical signals, T cells also respond to mechanical cues such as tissue stiffness. Traditional ex-vivo mechanostimulating platforms, however, present a uniform mechanical environment, unlike the heterogeneous conditions T cells encounter in-vivo. This work introduces a mechanically-biphasic T-cell stimulating surface, with alternating soft and stiff microdomains, to mimic the complex mechanical signals T cells face. Results show that T cells exposed to this biphasic environment do not average the mechanical signals but instead respond similarly to those on a homogeneously soft surface, leading to lower activation compared to those on a stiff surface. Interestingly, long-term exposure to these patterns enhances the proliferation of central memory and effector T cell phenotypes, similar to stiff environments. These findings reveal the non-linear nature of T cell mechanosensing and suggest that mechanical heterogeneity plays a critical role in modulating T cell responses, providing new insights into T cell activation and potential implications for immunotherapies. STATEMENT OF SIGNIFICANCE: This research offers a fresh perspective in T cell mehanosensing, an important yet underexplored aspect of immunity. While previous studies have demonstrated that T cells sense homogeneous mechanical environments ex-vivo, their ability to discern and respond to simultaneous mechanical cues-resembling the complexity of in-vivo conditions-remained unexamined. By designing a mechanically patterned surface with alternating soft and stiff microdomains, this study simulates the diverse mechanical landscape encountered by T cells in-vivo. The findings reveal that T cells predominantly respond to this pattern as they would to a uniformly soft environment. This insight, showing that mechanical signals shape T cell activation and promote specific phenotypes, enhances our understanding of T cell biology and points to new directions for immunotherapy development.
Collapse
Affiliation(s)
- Jatin Jawhir Pandit
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva , Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva , Israel
| | - Abed Al-Kader Yassin
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Carlos Ureña Martin
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva , Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva , Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva , Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva , Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva , Israel; Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva , Israel.
| |
Collapse
|
3
|
Vo TS, Hoang T, Vo TTBC, Jeon B, Nguyen VH, Kim K. Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications. Adv Healthc Mater 2024; 13:e2303923. [PMID: 38573175 PMCID: PMC11468404 DOI: 10.1002/adhm.202303923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Trung Hoang
- Department of BiophysicsSungkyunkwan UniversitySuwon16419South Korea
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwon16419South Korea
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial ManagementCollege of EngineeringCan Tho UniversityCan Tho900000Vietnam
| | - Byounghyun Jeon
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| | - Kyunghoon Kim
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
4
|
Gaikwad A, Olowe M, Desai S. Deformation Mechanism of Aluminum, Copper, and Gold in Nanoimprint Lithography Using Molecular Dynamics Simulation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3104. [PMID: 38133002 PMCID: PMC10746065 DOI: 10.3390/nano13243104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Material deformation during nanoimprinting of aluminum (Al), copper (Cu), and gold (Au) was explored through molecular dynamics simulations. A comparative understanding of the deformation behavior of three substrate materials important for design and high-resolution pattern transfer was highlighted. In this study, we analyzed three metrics, including von Mises stresses, lattice deformation, and spring-back for the chosen materials. Of the three materials, the highest average von Mises stress of 7.80 MPa was recorded for copper, while the lowest value of 4.68 MPa was computed for the gold substrate. Relatively higher von Mises stress was observed for all three materials during the mold penetration stages; however, there was a significant reduction during the mold relaxation and retrieval stages. The Polyhedral Template Matching (PTM) method was adopted for studying the lattice dislocation of the materials. Predominantly Body-Centered Cubic (BCC) structures were observed during the deformation process and the materials regained more than 50% of their original Face-Centered Cubic (FCC) structures after mold retrieval. Gold had the lowest vertical spring-back at 6.54%, whereas aluminum had the highest average spring-back at 24.5%. Of the three materials, aluminum had the lowest imprint quality due to its irregular imprint geometry and low indentation depth after the NIL process. The findings of this research lay a foundation for the design and manufacture of Nanoimprint Lithography (NIL) molds for different applications while ensuring that the replicated structures meet the desired specifications and quality standards.
Collapse
Affiliation(s)
- Abhaysinh Gaikwad
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A & T State University, Greensboro, NC 27411, USA; (A.G.); (M.O.)
- Department of Industrial & Systems Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Michael Olowe
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A & T State University, Greensboro, NC 27411, USA; (A.G.); (M.O.)
- Department of Industrial & Systems Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Center for Excellence in Product Design and Advanced Manufacturing, North Carolina A & T State University, Greensboro, NC 27411, USA; (A.G.); (M.O.)
- Department of Industrial & Systems Engineering, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
5
|
Raksiri C, Potejanasak P, Dokyor T. Fabrication of Nanogroove Arrays on Acrylic Film Using Micro-Embossing Technique. Polymers (Basel) 2023; 15:3804. [PMID: 37765657 PMCID: PMC10534769 DOI: 10.3390/polym15183804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The fabrication of nanostructures is of great importance in producing biomedical devices. Significantly, the nanostructure of the polymeric film has a significant impact on the physical and biophysical behavior of the biomolecules. This study presents an efficient nanofabrication method of nanogroove structures on an acrylic film by the micro-embossing process. In this method, a master mold was made from a thermos oxide silicon substrate using photolithography and etching techniques. An isotropic optical polymethyl methacrylate (PMMA) film is used in the experiment. The acrylic film is known for its excellent optical properties in products such as optical lenses, medical devices, and various general purpose engineering plastics. Then, the micro-embossing process was realized to fabricate nanogroove patterns on an acrylic film by using a micro-embossing machine. However, the morphology of the nanopatterns on an acrylic film was characterized by using an atomic force microscope to measure the dimensions of the nanogroove patterns. The impact of embossing temperature on the morphology of nanogroove patterns on acrylic film is experimentally investigated. The results show that when the embossing temperature is too small, the pattern is not fully formed, and slipping occurs in nanopatterns on the acrylic film. On the other hand, the effect of increasing the embossing temperature on the morphology of nanogrooves agrees with the master mold, and the crests between the nanogrooves form straight edges. It should be noted that the micro-embossing temperature also strongly influences the transferability of nanopatterns on an acrylic film. The technique has great potential for rapidly fabricating nanostructure patterns on acrylic film.
Collapse
Affiliation(s)
- Chana Raksiri
- Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Potejana Potejanasak
- Department of Industrial Engineering, School of Engineering, University of Phayao, Phayao 56000, Thailand
| | - Thitipoom Dokyor
- Department of Mechanical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
6
|
Hager A, Güniat L, Morgan N, Ramanandan SP, Rudra A, Piazza V, Fontcuberta I Morral A, Dede D. The implementation of thermal and UV nanoimprint lithography for selective area epitaxy. NANOTECHNOLOGY 2023; 34:445301. [PMID: 37494897 DOI: 10.1088/1361-6528/acea87] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Semiconductor nanowires (NWs) in horizontal configuration could provide a path for scalable NW-based devices. Bottom-up large-scale manufacturing of these nanostructures by selective area epitaxy (SAE) relies on precise nanopatterning of various shapes on the growth masks. Electron beam lithography offers an extraordinary accuracy suited for the purpose. However, this technique is not economically viable for large production as it has a low throughput and requires high investment and operational costs. Nanoimprint lithography (NIL) has the potential to reduce fabrication time and costs significantly while requiring less sophisticated equipment. In this work, we utilize both thermal and UV NIL for patterning substrates for SAE, elucidating the advantages and disadvantages of each lithography technique. We demonstrate the epitaxial growth of Ge and GaAs NWs on these substrates, where we observe high-quality mono-crystalline structures. Even though both processes can produce small uniform structures suitable for SAE, our results show that UV NIL proves to be superior and enables reliable and efficient patterning of sub-100 nm mask features at the wafer scale.
Collapse
Affiliation(s)
- Antonia Hager
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Lucas Güniat
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Nicholas Morgan
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Santhanu Panikar Ramanandan
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Alok Rudra
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Valerio Piazza
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Anna Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
- Faculty of Basic Sciences, Institute of Physics, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Didem Dede
- Laboratory of Semiconductor Materials, Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
7
|
Toledo E, Iraqi M, Pandey A, Tzadka S, Le Saux G, Porgador A, Schvartzman M. Multifunctional Nanoscale Platform for the Study of T Cell Receptor Segregation. ACS OMEGA 2023; 8:28968-28975. [PMID: 37599975 PMCID: PMC10433356 DOI: 10.1021/acsomega.2c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/10/2023] [Indexed: 08/22/2023]
Abstract
T cells respond not only to biochemical stimuli transmitted through their activating, costimulatory, and inhibitory receptors but also to biophysical aspects of their environment, including the receptors' spatial arrangement. While these receptors form nanoclusters that can either colocalize or segregate, the roles of these colocalization and segregation remain unclear. Deciphering these roles requires a nanoscale platform with independent and simultaneous spatial control of multiple types of receptors. Herein, using a straightforward and modular fabrication process, we engineered a tunable nanoscale chip used as a platform for T cell stimulation, allowing spatial control over the clustering and segregation of activating, costimulatory, and inhibitory receptors. Using this platform, we showed that, upon blocked inhibition, cells became sensitive to changes in the nanoscale ligand configuration. The nanofabrication methodology described here opens a pathway to numerous studies, which will produce an important insight into the molecular mechanism of T cell activation. This insight is essential for the fundamental understanding of our immune system as well as for the rational design of future immunotherapies.
Collapse
Affiliation(s)
- Esti Toledo
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Muhammed Iraqi
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Ashish Pandey
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sivan Tzadka
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Guillaume Le Saux
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Angel Porgador
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Mark Schvartzman
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Burkert S, Eder C, Heinrich A. Investigation of Inkjet-Printed Masks for Fast and Easy Photolithographic NIL Masters Manufacturing. MICROMACHINES 2023; 14:1524. [PMID: 37630060 PMCID: PMC10456390 DOI: 10.3390/mi14081524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023]
Abstract
Modern optical systems often require small, optically effective structures that have to be manufactured both precisely and cost-effectively. One option to do this is using nanoimprint lithography (NIL), in which the optical structures are replicated as masters using a stamping process. It would also be advantageous to manufacture the master structures quickly and easily. A master manufacturing process based on a photolithographic image of an inkjet-printed mask is presented and investigated in this paper. An essential element is that a deliberate blurring of the printed structure edge of the mask is used in the photolithographic process. Combined with the use of a non-linear photoresist, this allows for improved edge geometries of the master structure. We discuss the inkjet-printed photomask, the custom photolithography system to prevent imaging of the printing dot roughness and the manufacturing processes of NIL polymer masks as well as their subsequent stamp imprinting. Finally, it was shown that stamp geometries with a width of 1.7 µm could be realised using inkjet-printed photomasks in the master manufacturing process. This methodology opens up the potential of fast and simple master manufacturing for the development and manufacturing of optical elements.
Collapse
Affiliation(s)
| | | | - Andreas Heinrich
- Center of Optical Technologies, Aalen University, 73430 Aalen, Germany; (S.B.); (C.E.)
| |
Collapse
|
9
|
Peng Z, Zhang Y, Choi CLR, Zhang P, Wu T, Chan YK. Continuous roller nanoimprinting: next generation lithography. NANOSCALE 2023. [PMID: 37376894 DOI: 10.1039/d2nr06380h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanoimprint lithography (NIL) is a cost-effective and high-throughput technique for replicating nanoscale structures that does not require expensive light sources for advanced photolithography equipment. NIL overcomes the limitations of light diffraction or beam scattering in traditional photolithography and is suitable for replicating nanoscale structures with high resolution. Roller nanoimprint lithography (R-NIL) is the most common NIL technique benefiting large-scale, continuous, and efficient industrial production. In the past two decades, a range of R-NIL equipment has emerged to meet the industrial needs for applications including biomedical devices, semiconductors, flexible electronics, optical films, and interface functional materials. R-NIL equipment has a simple and compact design, which allows multiple units to be clustered together for increased productivity. These units include transmission control, resist coating, resist curing, and imprinting. This critical review summarizes the hitherto R-NIL processes, their typical technical problems, and corresponding solutions and gives guidelines for developing advanced R-NIL equipment.
Collapse
Affiliation(s)
- Zhiting Peng
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chin Long Ronald Choi
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Pengcheng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
10
|
Qu Z, Zhou P, Min F, Chen S, Guo M, Huang Z, Ji S, Yan Y, Yin X, Jiang H, Ke Y, Zhao YS, Yan X, Qiao Y, Song Y. Bubble wall confinement-driven molecular assembly toward sub-12 nm and beyond precision patterning. SCIENCE ADVANCES 2023; 9:eadf3567. [PMID: 36921052 PMCID: PMC10017045 DOI: 10.1126/sciadv.adf3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.
Collapse
Affiliation(s)
- Zhiyuan Qu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fanyi Min
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengnan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mengmeng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhandong Huang
- School of Chemical Engineering and Technology, Xi'an JiaoTong University, Shaanxi 710049, P. R. China
| | - Shiyang Ji
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Yong Sheng Zhao
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xuehai Yan
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yali Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, CAS Research, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Le Saux G, Toledo-Ashkenazi E, Schvartzman M. Fabrication of Nanoscale Arrays to Study the Effect of Ligand Arrangement on Inhibitory Signaling in NK Cells. Methods Mol Biol 2023; 2654:313-325. [PMID: 37106191 DOI: 10.1007/978-1-0716-3135-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Molecular scale nanopatterns of bioactive molecules have been used to study the effect of transmembrane receptor arrangement on a variety of cell types, including immune cells and their immune response in particular. However, state-of-the-art fabrication approaches have thus far enabled the production of patterns with control over one receptor type only. Herein, we describe a protocol to fabricate arrays for the molecular scale control of the segregation between activating and inhibitory receptors in NK cells. We used this platform to study how ligand segregation regulates NK cell inhibitory signaling and function. The arrays are based on patterns of nanodots of two metals, selectively functionalized with activating and inhibitory ligands. Due to the versatility of our functionalization approach, this protocol can be applied to configurate virtually any combination of extracellular ligands into controlled multifunctional arrays.
Collapse
Affiliation(s)
- Guillaume Le Saux
- Department of Materials Engineering, Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Esti Toledo-Ashkenazi
- Department of Materials Engineering, Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mark Schvartzman
- Department of Materials Engineering, Isle Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
12
|
Handrea-Dragan IM, Botiz I, Tatar AS, Boca S. Patterning at the micro/nano-scale: Polymeric scaffolds for medical diagnostic and cell-surface interaction applications. Colloids Surf B Biointerfaces 2022; 218:112730. [DOI: 10.1016/j.colsurfb.2022.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
13
|
Tzadka Shalit S, Ostrovsky N, Frankenstein Shefa H, Kassis E, Joseph S, Schvartzman M. Direct nanoimprint of chalcogenide glasses with optical functionalities via solvent-based surface softening. OPTICS EXPRESS 2022; 30:26229-26237. [PMID: 36236818 DOI: 10.1364/oe.462448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 06/16/2023]
Abstract
Chalcogenide glasses are attractive materials for optical applications. However, these applications often require patterning of the surface with functional micro-/ nanostructures. Such patterning is challenging by traditional microfabrication methods. Here, we present a new, to the best of our knowledge, approach of direct imprint via solvent-based surface softening, for the patterning of As2Se3 surface. Our approach is based on an elastomeric stamp soaked in an organic solvent. During the imprint, the solvent diffuses into the imprinted substrate, plasticizes its surface, and thereby allows its imprint at the temperature below its glass transition point. Thus, our approach combines the full pattern transfer with the maintenance of the shape of the imprinted substrate, which is necessary for optical devices. By using this approach, we demonstrated functional antireflective microstructures directly imprinted on As2Se3 surface. Furthermore, we showed that our approach can produce imprinted features sized down to 20 nm scale. We believe that our new approach paves the way for more future applications of chalcogenide glasses.
Collapse
|
14
|
Jin J, Wang Z, Wu J, Yu Z, Cao X, Wang X. PDMS-PUA bi-directional replication technology and its applications. APPLIED OPTICS 2022; 61:4558-4566. [PMID: 36256298 DOI: 10.1364/ao.460724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 06/16/2023]
Abstract
Polydimethylsiloxane (PDMS) and polyurethane acrylate (PUA) are excellent pattern transfer materials. In this study, PDMS-PUA bi-directional replication technology is explored using the PDMS grating as a template, and relevant technical issues are discussed in detail. Special surface treatment and process optimization are applied to solve the problems of demolding, PDMS polymerization inhibition, and substrate flatness. Further experiments show that the technology can be employed to replicate nanoscale structures and has the potential value of prolonging the longevity of the original template. Additionally, utilizing the advantage of the high elasticity of PDMS materials, two applications of bi-directional replication technology are demonstrated. One is to increase the line-density of the grating by stretching, and the experimental results show that the line-density of the grating increased by 26.6%. The other one is to fabricate the convex grating. Compared with the original planar PDMS grating, the resolution of the first-order diffraction spectrum of the convex grating at the focal point has been greatly improved. Since this technology requires simple equipment, and PDMS and PUA are reusable, it has the advantages of low cost, simplicity, and rapid fabrication. The two application examples also indicate that the technology has good application value.
Collapse
|
15
|
Spheres-in-Grating Assemblies with Altered Photoluminescence and Wetting Properties. NANOMATERIALS 2022; 12:nano12071084. [PMID: 35407201 PMCID: PMC9000395 DOI: 10.3390/nano12071084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
In this work, we report the fabrication of spheres-in-grating assemblies consisting of equally spaced parallel rectangular grooves filled with fluorescent spheres, by employing embossing and convective self-assembly methods. The developed hierarchical assemblies, when compared to spheres spin-cast on glass, exhibited a blueshift in the photoluminescence spectra, as well as changes in wetting properties induced not only by the patterning process, but also by the nature and size of the utilized spheres. While the patterning process led to increased hydrophobicity, the utilization of spheres with larger diameter improved the hydrophilicity of the fabricated assemblies. Finally, by aiming at the future integration of the spheres-in-grating assemblies as critical components in different technological and medical applications, we report a successful encapsulation of the incorporated spheres within the grating with a top layer of a functional polymer.
Collapse
|
16
|
Ganjian M, Modaresifar K, Rompolas D, Fratila-Apachitei LE, Zadpoor AA. Nanoimprinting for high-throughput replication of geometrically precise pillars in fused silica to regulate cell behavior. Acta Biomater 2022; 140:717-729. [PMID: 34875357 DOI: 10.1016/j.actbio.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022]
Abstract
Developing high-throughput nanopatterning techniques that also allow for precise control over the dimensions of the fabricated features is essential for the study of cell-nanopattern interactions. Here, we developed a process that fulfills both of these criteria. Firstly, we used electron-beam lithography (EBL) to fabricate precisely controlled arrays of submicron pillars with varying values of interspacing on a large area of fused silica. Two types of etching procedures with two different systems were developed to etch the fused silica and create the final desired height. We then studied the interactions of preosteoblasts (MC3T3-E1) with these pillars. Varying interspacing was observed to significantly affect the morphological characteristics of the cell, the organization of actin fibers, and the formation of focal adhesions. The expression of osteopontin (OPN) significantly increased on the patterns, indicating the potential of the pillars for inducing osteogenic differentiation. The EBL pillars were thereafter used as master molds in two subsequent processing steps, namely soft lithography and thermal nanoimprint lithography for high-fidelity replication of the pillars on the substrates of interest. The molding parameters were optimized to maximize the fidelity of the generated patterns and minimize the wear and tear of the master mold. Comparing the replicated feature with those present on the original mold confirmed that the geometry and dimensions of the replicated pillars closely resemble those of the original ones. The method proposed in this study, therefore, enables the precise fabrication of submicron- and nanopatterns on a wide variety of materials that are relevant for systematic cell studies. STATEMENT OF SIGNIFICANCE: Submicron pillars with specific dimensions on the bone implants have been proven to be effective in controlling cell behaviors. Nowadays, numerous methods have been proposed to produce bio-instructive submicron-topographies. However, most of these techniques are suffering from being low-throughput, low-precision, and expensive. Here, we developed a high-throughput nanopatterning technique that allows for control over the dimensions of the features for the study of cell-nanotopography interactions. Assessing the adaptation of preosteoblast cells showed the potential of the pillars for inducing osteogenic differentiation. Afterward, the pillars were used for high-fidelity replication of the bio-instructive features on the substrates of interest. The results show the advantages of nanoimprint lithography as a unique technique for the patterning of large areas of bio-instructive surfaces.
Collapse
|
17
|
Shiohara A, Prieto-Simon B, Voelcker NH. Porous polymeric membranes: fabrication techniques and biomedical applications. J Mater Chem B 2021; 9:2129-2154. [PMID: 33283821 DOI: 10.1039/d0tb01727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Porous polymeric membranes have shown great potential in biological and biomedical applications such as tissue engineering, bioseparation, and biosensing, due to their structural flexibility, versatile surface chemistry, and biocompatibility. This review outlines the advantages and limitations of the fabrication techniques commonly used to produce porous polymeric membranes, with especial focus on those featuring nano/submicron scale pores, which include track etching, nanoimprinting, block-copolymer self-assembly, and electrospinning. Recent advances in membrane technology have been key to facilitate precise control of pore size, shape, density and surface properties. The review provides a critical overview of the main biological and biomedical applications of these porous polymeric membranes, especially focusing on drug delivery, tissue engineering, biosensing, and bioseparation. The effect of the membrane material and pore morphology on the role of the membranes for each specific application as well as the specific fabrication challenges, and future prospects of these membranes are thoroughly discussed.
Collapse
Affiliation(s)
- Amane Shiohara
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Beatriz Prieto-Simon
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain and ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Deposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Melbourne Centre of Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| |
Collapse
|
18
|
Shi S, Cao L, Gao H, Tian Z, Bi W, Geng C, Xu S. Solvent- and initiator-free fabrication of efficient and stable perovskite-polystyrene surface-patterned thin films for LED backlights. NANOSCALE 2021; 13:9381-9390. [PMID: 34002177 DOI: 10.1039/d0nr08759a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a one-pot route for the synthesis of CsPbBr3 perovskite nanocrystals (PNCs) in styrene to form a glue-like polystyrene (PS) pre-polymer incorporating mono-dispersed PNCs. The pre-polymer enables solvent- and initiator-free fabricating and patterning PNC-PS light down-conversion films for liquid crystal display application. The mechanistic study reveals that the styrene molecules adsorbed on the PNC surface undergo self-initiated polymerization in the pre-polymerization process, forming stable surface capsulation over the PNCs. The PNC-PS pre-polymer and composite film display high photoluminescent quantum yield (PLQY) and resistance to air, light irradiation and water. The micropatterned PNC-PS film with a period of 1000 nm was fabricated through imprinting of the pre-polymer. The micropatterned thin film displays an enlarged viewing angle, improved light distribution and PLQY of >90%. The backlight employing the PNC-PS film displays bright green color and a wide color gamut of >120% NTSC. This solvent-free and one-pot strategy could find promising potential in the development of diverse luminescent nanocomposites to meet the requirements of micro/nano-manufacturing and high performance display application.
Collapse
Affiliation(s)
- Shuangshuang Shi
- Tianjin Key Laboratory of Electronic Materials and Devices, School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Barad HN, Kwon H, Alarcón-Correa M, Fischer P. Large Area Patterning of Nanoparticles and Nanostructures: Current Status and Future Prospects. ACS NANO 2021; 15:5861-5875. [PMID: 33830726 PMCID: PMC8155328 DOI: 10.1021/acsnano.0c09999] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/02/2021] [Indexed: 05/05/2023]
Abstract
Nanoparticles possess exceptional optical, magnetic, electrical, and chemical properties. Several applications, ranging from surfaces for optical displays and electronic devices, to energy conversion, require large-area patterns of nanoparticles. Often, it is crucial to maintain a defined arrangement and spacing between nanoparticles to obtain a consistent and uniform surface response. In the majority of the established patterning methods, the pattern is written and formed, which is slow and not scalable. Some parallel techniques, forming all points of the pattern simultaneously, have therefore emerged. These methods can be used to quickly assemble nanoparticles and nanostructures on large-area substrates into well-ordered patterns. Here, we review these parallel methods, the materials that have been processed by them, and the types of particles that can be used with each method. We also emphasize the maximal substrate areas that each method can pattern and the distances between particles. Finally, we point out the advantages and disadvantages of each method, as well as the challenges that still need to be addressed to enable facile, on-demand large-area nanopatterning.
Collapse
Affiliation(s)
- Hannah-Noa Barad
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Hyunah Kwon
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Mariana Alarcón-Correa
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max
Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
20
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
Su S, Liang J, Wang Z, Xin W, Li X, Wang D. Microtip focused electrohydrodynamic jet printing with nanoscale resolution. NANOSCALE 2020; 12:24450-24462. [PMID: 33300927 DOI: 10.1039/d0nr08236h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrohydrodynamic jet (E-Jet) printing is a promising manufacturing technique for micro-/nano-patterned structures with high resolution, high efficiency and high material compatibility. However, further improvement of the necking ratio of the E-Jet is still limited by the focusing principle. Moreover, ink viscosity is limited to values well below 90 mPa s owing to the high probability of nozzle blockage. Here, we propose a microtip focused electrohydrodynamic jet (MFEJ) printing to overcome these limitations. This technique uses a solid microtip with a radius of curvature (ROC) of several micrometers rather than a hollow nozzle, which is very simple and highly efficient to prepare and can effectively avoid nozzle clogging problems even with high-viscosity printing ink. High-resolution patterns in diverse geometries were printed using different inks with a wide range of viscosities (8.4-3500 mPa s). Nanodroplets with an average diameter of 73 nm were achieved. Moreover, nanofibers with a diameter of 30 nm were obtained using a 4 μm ROC microtip and the necking ratio was as high as 266 : 1. To the best of our knowledge, this is the smallest droplet or fiber diameter directly obtained via E-Jet printing to date without further physical or chemical processing. This MFEJ printing technique can improve printing resolution at the nanoscale, significantly enlarge the material applicability and effectively avoid nozzle clogging for the fabrication of nanodevices.
Collapse
Affiliation(s)
- Shijie Su
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116023, China.
| | | | | | | | | | | |
Collapse
|
22
|
D'Urso M, Kurniawan NA. Mechanical and Physical Regulation of Fibroblast-Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front Bioeng Biotechnol 2020; 8:609653. [PMID: 33425874 PMCID: PMC7793682 DOI: 10.3389/fbioe.2020.609653] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are cells present throughout the human body that are primarily responsible for the production and maintenance of the extracellular matrix (ECM) within the tissues. They have the capability to modify the mechanical properties of the ECM within the tissue and transition into myofibroblasts, a cell type that is associated with the development of fibrotic tissue through an acute increase of cell density and protein deposition. This transition from fibroblast to myofibroblast-a well-known cellular hallmark of the pathological state of tissues-and the environmental stimuli that can induce this transition have received a lot of attention, for example in the contexts of asthma and cardiac fibrosis. Recent efforts in understanding how cells sense their physical environment at the micro- and nano-scales have ushered in a new appreciation that the substrates on which the cells adhere provide not only passive influence, but also active stimulus that can affect fibroblast activation. These studies suggest that mechanical interactions at the cell-substrate interface play a key role in regulating this phenotype transition by changing the mechanical and morphological properties of the cells. Here, we briefly summarize the reported chemical and physical cues regulating fibroblast phenotype. We then argue that a better understanding of how cells mechanically interact with the substrate (mechanosensing) and how this influences cell behaviors (mechanotransduction) using well-defined platforms that decouple the physical stimuli from the chemical ones can provide a powerful tool to control the balance between physiological tissue regeneration and pathological fibrotic response.
Collapse
Affiliation(s)
- Mirko D'Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
23
|
Tzadka S, Ostrovsky N, Toledo E, Saux GL, Kassis E, Joseph S, Schvartzman M. Surface plasticizing of chalcogenide glasses: a route for direct nanoimprint with multifunctional antireflective and highly hydrophobic structures. OPTICS EXPRESS 2020; 28:28352-28365. [PMID: 32988108 DOI: 10.1364/oe.400038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Chalcogenide glasses are attractive materials for optical applications. However, these applications often require pattering of the surface with functional micro-/ nanostructures, which is challenging by traditional microfabrication. Here, we present a novel, robust, and scalable approach for the direct patterning of chalcogenide glasses, based on soft imprinting of a solvent-plasticized glass layer formed on the glass surface. We established a methodology for surfaces plasticizing, through tuning of its glass transition temperature by process conditions, without compromising on the chemical composition, structure, and optical properties of the plasticized layer. This control over the glass transition temperature allowed to imprint the surface of chalcogenide glass with features sized down to 20 nm, and achieve an unprecedented combination of full pattern transfer and complete maintenance of the shape of the imprinted substrate. We demonstrated two applications of our patterning approach: a diffraction grating, and a multifunctional pattern with both antireflective and highly hydrophobic water-repellent functionalities - a combination that has never been demonstrated for chalcogenide glasses. This work opens a new route for the nanofabrication of optical devices based on chalcogenide glasses and paves the way to numerous future applications for these important optical materials.
Collapse
|
24
|
Jung WB, Jang S, Cho SY, Jeon HJ, Jung HT. Recent Progress in Simple and Cost-Effective Top-Down Lithography for ≈10 nm Scale Nanopatterns: From Edge Lithography to Secondary Sputtering Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907101. [PMID: 32243015 DOI: 10.1002/adma.201907101] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Indexed: 05/24/2023]
Abstract
The development of a simple and cost-effective method for fabricating ≈10 nm scale nanopatterns over large areas is an important issue, owing to the performance enhancement such patterning brings to various applications including sensors, semiconductors, and flexible transparent electrodes. Although nanoimprinting, extreme ultraviolet, electron beams, and scanning probe litho-graphy are candidates for developing such nanopatterns, they are limited to complicated procedures with low throughput and high startup cost, which are difficult to use in various academic and industry fields. Recently, several easy and cost-effective lithographic approaches have been reported to produce ≈10 nm scale patterns without defects over large areas. This includes a method of reducing the size using the narrow edge of a pattern, which has been attracting attention for the past several decades. More recently, secondary sputtering lithography using an ion-bombardment technique was reported as a new method to create high-resolution and high-aspect-ratio structures. Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns via edge and secondary sputtering techniques is reviewed. The principles, technical advances, and applications are demonstrated. Finally, the future direction of edge and secondary sputtering lithography research toward issues to be resolved to broaden applications is discussed.
Collapse
Affiliation(s)
- Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sungwoo Jang
- Semiconductor R&D Center, Samsung Electronics Co., Ltd, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do, 18448, Republic of Korea
| | - Soo-Yeon Cho
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hwan-Jin Jeon
- Department of Chemical Engineering and Biotechnology, Korea Polytechnic University, Siheung-si, Gyeonggi-do, 15073, Republic of Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
25
|
Wei L, Qian J, Dong L, Lu M. Chalcogenide Photonic Crystals Fabricated by Soft Imprint-Assisted Photodoping of Silver. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000472. [PMID: 32309904 DOI: 10.1002/smll.202000472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/01/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
This work presents a low-cost, large-scale nanofabrication approach that combines imprint lithography and silver doping (IL-SD) to pattern chalcogenide glass (ChG) films for realizing IR devices. The IL-SD method involves controled photodoping of silver (Ag) atoms into ChG films and selective removing of undoped ChG. For photodoping of Ag, an Ag-coated elastomer stamp is brought in contact with the ChG film and exposed to ultraviolet light, and subsequently, the Ag atoms are photo-dissolved into the ChG film following the nanopatterns on the elastomer stamp. Due to the high wet-etching selectivity of the undoped ChG to Ag-doped one, the ChG film can be precisely patterned with a spatial resolution on the order of a few tens of nanometers. Also, by controling the lateral diffusion of Ag atoms during ultraviolet exposure, it is possible to adjust the size of the final patterns formed in the ChG film. As an application demonstration of the IL-SD process, the As2 S3 -based near-infrared photonic crystals (PhCs) in the wavelength range and flexible midinfrared PhCs are formed, and their optical resonances are investigated. The IL-SD process enables the low-cost fabrication of ChG nanostructures on different substrate materials and gives a great promise to realize various IR devices.
Collapse
Affiliation(s)
- Le Wei
- Department of Electrical and Computer Engineering, Iowa State University, 2115 Coover Hall, Ames, IA, 50011, USA
| | - Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, 2115 Coover Hall, Ames, IA, 50011, USA
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, 2115 Coover Hall, Ames, IA, 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Iowa State University, 2128 Coover Hall, Ames, IA, 50011, USA
| |
Collapse
|
26
|
Li L, Xia Z, Yang Y, Yuan MN. Atomistic simulations on nanoimprinting of copper by aligned carbon nanotube arrays under a high-frequency mechanical vibration. NANOTECHNOLOGY 2020; 31:045303. [PMID: 31561243 DOI: 10.1088/1361-6528/ab4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoimprinting behaviors of copper substrates and double-walled carbon nanotubes with interwall sp 3 bonds are investigated using molecular dynamics simulations. A high-frequency mechanical vibration with various amplitudes is applied on the carbon nanotube (CNT) mold and copper substrate in different directions. Results show that exciting mechanical resonances both on the CNT and substrate drastically decrease the maximum imprint force and interfacial friction up to 50% under certain amplitudes. Meanwhile, it is demonstrated that defects occur in the {111} plane in the copper substrate during nanoimprinting. For different CNT array densities, a higher grafting density needs more imprint force to transfer patterns. The maximum imprint force for a large range of CNT array densities can be reduced by vibrational perturbations, while reduction rates depend on the CNT grafting density. This work sheds deep insights into the nanoimprint process at the atomic level, suggesting that vibration perturbation is an effective approach for improving the nanoimprinting accuracy and preventing the fracture of nanopatterns.
Collapse
Affiliation(s)
- Lili Li
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, People's Republic of China
| | - Zhenhai Xia
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, United States of America
| | - Yanqing Yang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - M N Yuan
- College of Mechatronic Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
27
|
|
28
|
Rosenberg M, Schvartzman M. Direct Resistless Soft Nanopatterning of Freeform Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43494-43499. [PMID: 31660725 DOI: 10.1021/acsami.9b13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoimprint is broadly used to pattern thin polymer films on rigid substrates. The resulted patterns can be used either as functional nanostructures or as masks for a pattern transfer. Also, nanoimprint could, in principle, be used for the direct patterning of thermoformable substrates with functional nanostructures; however, the resulted global substrate deformation makes this approach unpractical. Here, we present a new approach for the direct nanoimprint of thermoformable substrates with functional nanostructures through precise maintaining of the substrate shape. Our approach is based on an elastomeric stam soaked in organic solvent, which diffuses into the imprinted substrate, plasticizes its surface, and thereby allows its imprint at the temperature below its glass transition point. Using this approach, we imprinted features at the 20 nm scale, which are comparable to those demonstrated by conventional nanoimprint techniques. We illustrated the applicability of our approach by producing functional antireflective nanostructures onto flat and curved optical substrates. In both cases, we achieved full pattern transfer and maintained the shape of the imprinted substrates, a combination that has not been demonstrated so far. Our approach substantially expands the capabilities of nanoimprint and paves the way to its numerous applications, which have been impossible by existing nanopatterning technologies.
Collapse
|