1
|
Meng LC, Hou YB. Electric-field modulated energy transfer in phosphorescent material- and fluorescent material-codoped polymer light-emitting diodes. RSC Adv 2024; 14:12294-12302. [PMID: 38633491 PMCID: PMC11019667 DOI: 10.1039/d4ra00669k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
The excited-state energy transfer widely exists in mixed-material systems and devices. The modulation of an electric field on the energy transfer in photoluminescence has been demonstrated. However, to date, no studies on the electric-field modulation of the excited-state energy transfer in organic optoelectronic devices have been reported. Herein, we investigate the effect of an electric field on the energy transfer in the poly(N-vinylcarbazole) (PVK) thin films doped with iridium(iii)[bis(4,6-difluorophenyl)pyridinato-N,C2']-tetrakis(1-pyrazolyl)borate (Fir6) and 5,6,11,12-tetraphenylnaphthacene (rubrene) (PVK:Fir6:rubrene) and the corresponding light-emitting diodes. Combined with the Onsager model describing electric-field enhanced exciton dissociation, we find that the electric field increases the rate of Dexter energy transfer from Fir6 to rubrene in the films and the diodes. The voltage-dependent color shift in the PVK:Fir6:rubrene light-emitting diodes can be explained by the electric-field enhanced Dexter energy transfer from Fir6 to rubrene. Our findings are important for the control of energy transfer process in organic optoelectronic devices by an electric field for desirable applications.
Collapse
Affiliation(s)
- Ling-Chuan Meng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 PR China
| | - Yan-Bing Hou
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University Beijing 100044 PR China
| |
Collapse
|
2
|
Chen B, Zheng W, Chun F, Xu X, Zhao Q, Wang F. Synthesis and hybridization of CuInS 2 nanocrystals for emerging applications. Chem Soc Rev 2023; 52:8374-8409. [PMID: 37947021 DOI: 10.1039/d3cs00611e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Copper indium sulfide (CuInS2) is a ternary A(I)B(III)X(VI)2-type semiconductor featuring a direct bandgap with a high absorption coefficient. In attempts to explore their practical applications, nanoscale CuInS2 has been synthesized with crystal sizes down to the quantum confinement regime. The merits of CuInS2 nanocrystals (NCs) include wide emission tunability, a large Stokes shift, long decay time, and eco-friendliness, making them promising candidates in photoelectronics and photovoltaics. Over the past two decades, advances in wet-chemistry synthesis have achieved rational control over cation-anion reactivity during the preparation of colloidal CuInS2 NCs and post-synthesis cation exchange. The precise nano-synthesis coupled with a series of hybridization strategies has given birth to a library of CuInS2 NCs with highly customizable photophysical properties. This review article focuses on the recent development of CuInS2 NCs enabled by advanced synthetic and hybridization techniques. We show that the state-of-the-art CuInS2 NCs play significant roles in optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
| | - Weilin Zheng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, Jiangsu 210023, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
4
|
Kalkal A, Kadian S, Kumar S, Manik G, Sen P, Kumar S, Packirisamy G. Ti 3C 2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens Bioelectron 2022; 195:113620. [PMID: 34560349 DOI: 10.1016/j.bios.2021.113620] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Nanohybrids of two-dimensional (2D) layered materials have shown fascinating prospects towards the fabrication of highly efficient fluorescent immunosensor. In this context, a nanohybrid of ultrathin Ti3C2-MXene nanosheets and silver nanoparticles (Ag@Ti3C2-MXene) has been reported as a dual-energy acceptor for ultrahigh fluorescence quenching of protein-functionalized graphene quantum dots (anti-NSE/amino-GQDs). The Ti3C2-MXene nanosheets are decorated with silver nanoparticles (AgNPs) to obsolete the agglomeration and restacking through a one-pot direct reduction method wherein the 2D Ti3C2-MXene nanosheets acted both as a reducing agent and support matrix for AgNPs. The as-prepared nanohybrid is characterized by various techniques to analyze the optical, structural, compositional, and morphological parameters. The quenching efficiency and energy transfer capability between the anti-NSE/amino-GQDs (donor) and Ag@Ti3C2-MXene (acceptor) have been explored through steady state and time-resolved spectroscopic studies. Interestingly, the Ag@Ti3C2-MXene nanohybrid exhibits better quenching and energy transfer efficiencies in contrast to bare Ti3C2-MXene, AgNPs and previously reported AuNPs. Based on optimized donor-acceptor pair, a fluorescent turn-on biosensing system is constructed that revealed improved biosensing characteristics compared to Ti3C2-MXene, graphene and AuNPs for the detection of neuron-specific enolase (NSE), including higher sensitivity (∼771 mL ng-1), broader linear detection range (0.0001-1500 ng mL-1), better LOD (0.05 pg mL-1), and faster response time (12 min). Besides, remarkable biosensing capability has been observed in serum samples, with fluorescence recovery of ∼98%.
Collapse
Affiliation(s)
- Ashish Kalkal
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Sumit Kumar
- Department of Research and Innovations, Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India
| | - Saurabh Kumar
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science Bengaluru, Karnataka, 560012, India; Department of Medical Devices, National Institute of Pharmaceutical Education and Research Guwahati, Assam, 781101, India.
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
5
|
Xiao X, Zheng B, Zheng Q, Lu Z, Cen D, Cai X, Li X, Deng R. NIR light‐triggered peroxynitrite anion production via direct lanthanide‐triplet photosensitization for enhanced photodynamic therapy. J Mater Chem B 2022; 10:4501-4508. [DOI: 10.1039/d2tb00684g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peroxynitrite anion (ONOO−), a product derived from reaction between reactive oxygen species (ROS) and nitric oxide (NO), is considered to be a more toxic reactive specie than most ROS for...
Collapse
|
6
|
Zhou M, Zou X, Liu Y, Wang H, Su Q. Degradation of upconverting nanoparticles in simulated fluids evaluated by ratiometric luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of artificially simulated fluids on the optical properties of upconversion nanoparticles and the degradation mechanism was systematically studied.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xi Zou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Mahle R, Kumbhakar P, Nayar D, Narayanan TN, Kumar Sadasivuni K, Tiwary CS, Banerjee R. Current advances in bio-fabricated quantum dots emphasising the study of mechanisms to diversify their catalytic and biomedical applications. Dalton Trans 2021; 50:14062-14080. [PMID: 34549221 DOI: 10.1039/d1dt01529j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots (QDs), owing to their single atom-like electronic structure due to quantum confinement, are often referred to as artificial atoms. This unique physical property results in the diverse functions exhibited by QDs. A wide array of applications have been achieved by the surface functionalization of QDs, resulting in exceptional optical, antimicrobial, catalytic, cytotoxic and enzyme inhibition properties. Ordinarily, traditionally prepared QDs are subjected to post synthesis functionalization via a variety of methods, such as ligand exchange or covalent and non-covalent conjugation. Nevertheless, solvent toxicity, combined with the high temperature and pressure conditions during the preparation of QDs and the low product yield due to multiple steps in the functionalization, limit their overall use. This has driven scientists to investigate the development of greener, environmental friendly and cost-effective methods that can circumvent the complexity and strenuousness associated with traditional processes of bio-functionalization. In this review, a detailed analysis of the methods to bio-prepare pre-functionalized QDs, with elucidated mechanisms, and their application in the areas of catalysis and biomedical applications has been conducted. The environmental and health and safety aspects of the bio-derived QDs have been briefly discussed to unveil the future of nano-commercialization.
Collapse
Affiliation(s)
- Reddhy Mahle
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Divya Nayar
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, India
| | - Rintu Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
8
|
Li RS, Liu J, Yan Y, Su C, Lai T, Liao Y, Li YF, Li N, Huang CZ. Aggregation-Enhanced Energy Transfer for Mitochondria-Targeted ATP Ratiometric Imaging in Living Cells. Anal Chem 2021; 93:11878-11886. [PMID: 34403238 DOI: 10.1021/acs.analchem.1c02833] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Förster resonance energy transfer (FRET) from fluorescent nanoparticles to fluorescent dyes is an attractive approach for bioanalysis in living cells. However, the luminescence of the nanoparticle donor/acceptor has not been effectively used to produce highly efficient FRET because the distance between the energy donor and energy acceptor is often larger than the effective FRET radius (about 10 nm) and the uncontrolled rotational and translational diffusion of luminophores. Here, we develop an aggregation-enhanced energy transfer strategy that can overcome the impedance for effective energy transfer. The functional nanoprobes, named TPP-CDs-FITC, are carbon dots (CDs) functionalized with triphenylphosphine (TPP) and ∼117 fluorescein 5-isothiocyanate (FITC) on the surface. In dispersed solution, the 3.8 nm TPP-CDs-FITC show weak FRET efficiency (15.4%). After TPP-instructed mitochondrial targeting, enhanced FRET efficiency (53.2%) is induced due to the aggregation of TPP-CDs-FITC selectively triggered by adenosine triphosphate (ATP) in the mitochondria. The enhanced FRET efficiency can be attributed to the joint effect of the augment of numbers of FITC acceptors within 10 nm from dispersed 117 to aggregated 5499 and the restricted rotational and translational motions of TPP-CDs donors and FITC acceptors. Ultimately, we successfully observe the fluctuations of ATP levels in the mitochondria using the aggregation-enhanced energy transfer strategy of the TPP-CDs-FITC nanodevice.
Collapse
Affiliation(s)
- Rong Sheng Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Jiahui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yuan Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chuanyang Su
- General Station for Drug & Instrument Supervision and Control Joint Logistics Support Force, PLA, Beijing 100071, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yuan Fang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Wang Y, Chen B, Wang F. Overcoming thermal quenching in upconversion nanoparticles. NANOSCALE 2021; 13:3454-3462. [PMID: 33565549 DOI: 10.1039/d0nr08603g] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermal quenching that is characterized by loss of light emission with increasing temperature is widely observed in luminescent materials including upconversion nanoparticles, causing problems in technological applications such as lighting, displays, and imaging. Because upconversion processes involve extensive intra-particle energy transfer that is temperature dependent, methods have been established to fight against thermal quenching in upconversion nanoparticles by engineering the energy transfer routes. In this minireview, we discuss the origin of thermal quenching and the role of energy transfer in thermal quenching. Accordingly, recent efforts in overcoming thermal quenching of upconversion are summarized.
Collapse
Affiliation(s)
- Yanze Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China. and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
10
|
Shanks HR, Wu S, Nguyen NT, Lu D, Saunders BR. Including fluorescent nanoparticle probes within injectable gels for remote strain measurements and discrimination between compression and tension. SOFT MATTER 2021; 17:1048-1055. [PMID: 33289763 DOI: 10.1039/d0sm01635g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to remotely and non-invasively monitor and measure the strain within injectable gels used to augment soft tissue is highly desirable. Such information could enable real-time monitoring of gel performance and bespoke gel design. We report progress towards this goal using two fluorescent particle probe systems included within two different injectable gels. The two injectable gels have been previously studied in the contexts of intervertebral disc repair and stretchable gels for cartilage repair. The two fluorophore particle probes are blue or near-infrared (NIR) emitting and are present at very low concentrations. The normalised photoluminescence (PL) intensity from the blue emitting probe is shown to equal the compressive deformation ratio of the gels. Furthermore, the normalised ratio of the PL intensities for the blue and NIR probes varies linearly with deformation ratio over a wide range (from 0.2 to 3.0) with a seamless transition from compression to tension. Hence, PL can discriminate between compression and tension. The new approach established here should apply to other gels and enable remote detection of whether a gel is being compressed or stretched as well as the extent. This study may provide an important step towards remotely and minimally invasively measuring the strain experienced by load-supporting gels in vivo.
Collapse
Affiliation(s)
- Hannah R Shanks
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
11
|
Kembuan C, Oliveira H, Graf C. Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:35-48. [PMID: 33489665 PMCID: PMC7801781 DOI: 10.3762/bjnano.12.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/03/2020] [Indexed: 05/07/2023]
Abstract
Upconversion nanoparticles (UCNPs), consisting of NaYF4 doped with 18% Yb and 2% Er, were coated with microporous silica shells with thickness values of 7 ± 2 and 21 ± 3 nm. Subsequently, the negatively charged particles were functionalized with N-(6-aminohexyl)-3-aminopropyltrimethoxysilane (AHAPS), which provide a positive charge to the nanoparticle surface. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements revealed that, over the course of 24h, particles with thicker shells release fewer lanthanide ions than particles with thinner shells. However, even a 21 ± 3 nm thick silica layer does not entirely block the disintegration process of the UCNPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and cell cytometry measurements performed on macrophages (RAW 264.7 cells) indicate that cells treated with amino-functionalized particles with a thicker silica shell have a higher viability than those incubated with UCNPs with a thinner silica shell, even if more particles with a thicker shell are taken up. This effect is less significant for negatively charged particles. Cell cycle analyses with amino-functionalized particles also confirm that thicker silica shells reduce cytotoxicity. Thus, growing silica shells to a sufficient thickness is a simple approach to minimize the cytotoxicity of UCNPs.
Collapse
Affiliation(s)
- Cynthia Kembuan
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Takustraße 3, D-14195 Berlin, Germany
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Christina Graf
- Hochschule Darmstadt - University of Applied Sciences, Fachbereich Chemie- und Biotechnologie, Stephanstr. 7, D-64295 Darmstadt, Germany
| |
Collapse
|
12
|
Su Q, Zhou MT, Zhou MZ, Sun Q, Ai T, Su Y. Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer. Front Chem 2020; 8:836. [PMID: 33094100 PMCID: PMC7528114 DOI: 10.3389/fchem.2020.00836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a fundamental challenge caused by the difficulty in controlling interparticle interactions. Herein, we report a novel approach for the preparation of the chain-like assemblies of upconversion nanoparticles at different scales from nano-scale to micro-scale. The dimension of chain-like assembly can be fine-tuned using various incubation times. Our study observed Y-junction aggregate morphology due to the flexible nature of amphiphilic block copolymer. Furthermore, the prepared nanoparticle assemblies of upconversion nanoparticles with lengths up to several micrometers can serve as novel luminescent nanostructure and offer great opportunities in the fields of optical applications.
Collapse
Affiliation(s)
- Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Meng-Tao Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Ming-Zhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Qiang Sun
- Center for Functional Materials, NUS (Suzhou) Research Institute, Suzhou, China
| | - Taotao Ai
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, Singapore, Singapore
| |
Collapse
|
13
|
|
14
|
Sit HY, Yang B, Ka-Yan Kung K, Siu-Lun Tam J, Wong MK. Fluorescent Labelling of Glycans with FRET-Based Probes in a Gold(III)-Mediated Three-Component Coupling Reaction. Chempluschem 2020; 84:1739-1743. [PMID: 31943869 DOI: 10.1002/cplu.201900612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/18/2023]
Abstract
Single-site multifunctionalization of glycans is of importance in biological studies considering its crucial role in mediating biological events and human diseases. In this paper, a novel approach for multifunctional labelling of glycans has been developed featuring the use of fluorescence resonance energy transfer-based (FRET-based) probes for fluorescent labelling of glycans through a gold(III)-mediated three-component coupling reaction. Oxidation of glycans into aldehydes followed by the A3 -coupling reaction with FRET-based probes resulted in the single-site formation of fluorescent propargylamine products. The conversion of labelled glycans can be revealed by ratiometric analysis of the FRET signals. This labelling approach results in multifunctionalization of glycans with high selectivity and conversion between 66 and 69 %.
Collapse
Affiliation(s)
- Hoi-Yi Sit
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Bin Yang
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Karen Ka-Yan Kung
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - John Siu-Lun Tam
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
15
|
Chen B, Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01358j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review focuses on recent progress in the development of Yb-based upconversion nanoparticles and their emerging technological applications.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| | - Feng Wang
- Department of Materials Science and Engineering
- City University of Hong Kong
- Hong Kong SAR
- China
- City University of Hong Kong Shenzhen Research Institute
| |
Collapse
|
16
|
Francés-Soriano L, Peruffo N, Natile MM, Hildebrandt N. Er3+-to-dye energy transfer in DNA-coated core and core/shell/shell upconverting nanoparticles with 980 nm and 808 nm excitation of Yb3+ and Nd3+. Analyst 2020; 145:2543-2553. [DOI: 10.1039/c9an02532d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
FRET from upconversion nanoparticles to dyes using 980 nm and 808 nm excitation.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- Institute for Integrative Biology of the Cell (I2BC)
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- CEA
| | - Nicola Peruffo
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE)
- National Research Council (CNR) and Department of Chemical Sciences
- University of Padova
- 35131 Padova PD
- Italy
| | - Marta Maria Natile
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE)
- National Research Council (CNR) and Department of Chemical Sciences
- University of Padova
- 35131 Padova PD
- Italy
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC)
- Université Paris-Saclay
- Université Paris-Sud
- CNRS
- CEA
| |
Collapse
|
17
|
Zou H, Yang X, Chen B, Du Y, Ren B, Sun X, Qiao X, Zhang Q, Wang F. Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb
2
W
3
O
12. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Zou
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- School of Mathematics and PhysicsJiangsu University of Technology Changzhou 213001 China
| | - Xueqing Yang
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Bing Chen
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Yangyang Du
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Biyun Ren
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Xinwen Sun
- School of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xvsheng Qiao
- School of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Qiwei Zhang
- School of Materials and MetallurgyInner Mongolia University of Science and Technology Baotou 014010 China
| | - Feng Wang
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
18
|
Jin Z, Kapur A, Wang W, Diaz Hernandez J, Thakur M, Mattoussi H. The dual–function of lipoic acid groups as surface anchors and sulfhydryl reactive sites on polymer–stabilized QDs and Au nanocolloids. J Chem Phys 2019; 151:164703. [DOI: 10.1063/1.5126432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Anshika Kapur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Juan Diaz Hernandez
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Mannat Thakur
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, USA
| |
Collapse
|
19
|
Zou H, Yang X, Chen B, Du Y, Ren B, Sun X, Qiao X, Zhang Q, Wang F. Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb 2 W 3 O 12. Angew Chem Int Ed Engl 2019; 58:17255-17259. [PMID: 31523889 DOI: 10.1002/anie.201910277] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 01/30/2023]
Abstract
Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide-doped orthorhombic Yb2 W3 O12 crystals are synthesized and characterized by in situ X-ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29-fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.
Collapse
Affiliation(s)
- Hua Zou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xueqing Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yangyang Du
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Biyun Ren
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xinwen Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xvsheng Qiao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiwei Zhang
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
20
|
Xue M, Cao C, Zhou X, Xu M, Feng W, Li F. Tuning the Upconversion Efficiency and Spectrum of Upconversion Nanoparticles through Surface Decorating of an Organic Dye. Inorg Chem 2019; 58:14490-14497. [DOI: 10.1021/acs.inorgchem.9b02081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Meng Xue
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Cong Cao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
- Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaobo Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Ming Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Wei Feng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Institute of Biomedicine Sciences, and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| |
Collapse
|
21
|
Mejía L, Hadad C. Effect of the Euclidean dimensionality on the energy transfer up-conversion luminescence. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.111908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Zhou M, Ge X, Ke DM, Tang H, Zhang JZ, Calvaresi M, Gao B, Sun L, Su Q, Wang H. The Bioavailability, Biodistribution, and Toxic Effects of Silica-Coated Upconversion Nanoparticles in vivo. Front Chem 2019; 7:218. [PMID: 31024902 PMCID: PMC6468325 DOI: 10.3389/fchem.2019.00218] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
Lanthanide-doped upconversion nanoparticles can convert long wavelength excitation radiation to short wavelength emission. They have great potential in biomedical applications, such as bioimaging, biodetection, drug delivery, and theranostics. However, there is little information available on their bioavailability and biological effects after oral administration. In this study, we systematically investigated the bioavailability, biodistribution, and toxicity of silica-coated upconversion nanoparticles administrated by gavage. Our results demonstrate that these nanoparticles can permeate intestinal barrier and enter blood circulation by microstructure observation of Peyer's patch in the intestine. Comparing the bioavailability and the biodistribution of silica-coated upconversion nanoparticles with oral and intravenous administration routes, we found that the bioavailability and biodistribution are particularly dependent on the administration routes. After consecutive gavage for 14 days, the body weight, pathology, Zn and Cu level, serum biochemical analysis, oxidative stress, and inflammatory cytokines were studied to further evaluate the potential toxicity of the silica-coated upconversion nanoparticles. The results suggest that these nanoparticles do not show overt toxicity in mice even at a high dose of 100 mg/kg body weight.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Xiaoqian Ge
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai, China
| | - Da-Ming Ke
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Huan Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jun-Zheng Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Matteo Calvaresi
- Dipartimento di Chimica “G. Ciamician,” Alma Mater Studiorum–Università di Bologna, Bologna, Italy
| | - Bin Gao
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Lining Sun
- Research Center of Nano Science and Technology, and School of Material Science and Engineering, Shanghai University, Shanghai, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| |
Collapse
|
23
|
Ma X, Qiao S, Sun H, Su R, Sun C, Zhang M. Development of Structure-Switching Aptamers for Kanamycin Detection Based on Fluorescence Resonance Energy Transfer. Front Chem 2019; 7:29. [PMID: 30792976 PMCID: PMC6374352 DOI: 10.3389/fchem.2019.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
The structure-switching aptamers are designed for the simple and rapid detection of kanamycin based on the signal transduction principle of fluorescence resonance energy transfer (FRET). The structure switch is composed of kanamycin-binding aptamers and the complementary strands, respectively labeled with fluorophore and quencher, denoted as FDNA and QDNA. In the absence of kanamycin, FDNA and QDNA form the double helix structure through the complementary pairing of bases. The fluorophore and the quencher are brought into close proximity, which results in the fluorescence quenching because of the FRET mechanism. In the presence of kanamycin, the FDNA specifically bind to the target due to the high affinity of aptamers, and the QDNA are dissociated. The specific recognition between aptamers and kanamycin will obstruct the formation of structure switch and reduce the efficiency of FRET between FDNA and QDNA, thus leading to the fluorescence enhancement. Therefore, based on the structure-switching aptamers, a simple fluorescent assay for rapid detection of kanamycin was developed. Under optimal conditions, there was a good linear relationship between kanamycin concentration and the fluorescence signal recovery. The linear range of this method in milk samples was 100-600 nM with the detection limit of 13.52 nM (3σ), which is well below the maximum residue limit (MRL) of kanamycin in milk. This method shows excellent selectivity for kanamycin over the other common antibiotics. The structure-switching aptamers have been successfully applied to the detection of kanamycin spiked in milk samples with the satisfying recoveries between 101.3 and 109.1%, which is well-consistent with the results from LC-MS/MS. Due to the outstanding advantages of facile operation, rapid detection, high sensitivity, excellent specificity, and low cost, the application and extension of this strategy for rapid determination of antibiotics in food samples may greatly improve the efficiency in food safety and quality supervision.
Collapse
Affiliation(s)
- Xinyue Ma
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shangna Qiao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Hongjing Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Ruifang Su
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, China
| | - Mingdi Zhang
- Department of Food Science and Engineering, College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
24
|
Morales-Narváez E, Merkoçi A. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805043. [PMID: 30549101 DOI: 10.1002/adma.201805043] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Indexed: 05/27/2023]
Abstract
A few years ago, crucial graphene oxide (GO) features such as the carbon/oxygen ratio, number of layers, and lateral size were scarcely investigated and, thus, their impact on the overall optical biosensing performance was almost unknown. Nowadays valuable insights about these features are well documented in the literature, whereas others remain controversial. Moreover, most of the biosensing systems based on GO were amenable to operating as colloidal suspensions. Currently, the literature reports conceptually new approaches obviating the need of GO colloidal suspensions, enabling the integration of GO onto a solid phase and leading to their application in new biosensing devices. Furthermore, most GO-based biosensing devices exploit photoluminescent signals. However, further progress is also achieved in powerful label-free optical techniques exploiting GO in biosensing, particularly using optical fibers, surface plasmon resonance, and surface enhanced Raman scattering. Herein, a critical overview on these topics is offered, highlighting the key role of the physicochemical properties of GO. New challenges and opportunities in this exciting field are also highlighted.
Collapse
Affiliation(s)
- Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150, México
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|