1
|
Klaimanee E, Temram T, Ratanaphan A, Saithong S, Sooksawat D, Samphao A, Yakiyama Y, Sakurai H, Konno T, Tantirungrotechai Y, Choojun K, Leesakul N. Iridium(III) coordination compounds based on organophosphorus ancillary ligands showing cytotoxicity against breast cancer cells and Fe(III) luminescent sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125150. [PMID: 39305800 DOI: 10.1016/j.saa.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/10/2024]
Abstract
Three phosphorescent iridium(III) complexes consisting bis-diphosphine ligands were prepared and characterized by single-crystal XRD, CHN analysis, spectroscopic techniques, cyclic voltammetry, and DFT. The synthesized complexes were the three monomeric [Ir(ppy)2(L1)Cl] (1), [Ir(ppy)2(L2)]Cl (2) and [Ir(ppy)2(L3)]Cl (3) where L1 = bis-(diphenylphosphino)methane (dppm), L2 = bis-(diphenylphosphino)propane (dppp) and L3 = bis-(diphenylphosphino)benzene (dppbe). Complexes 1-3 gave an absorption band between 240 to 380 nm in both CH2Cl2 and DMSO, which is assigned as a charge transfer transition based on theoretical calculation. They showed a blue-green emission at 460-520 nm in DMSO with an absolute quantum efficiency of 0.013-0.046 at room temperature. The selective photo-induced electron transfer (PET) by Fe3+ in DMSO, was studied to obey the Rehm-Weller principle. The 1:1 binding soichiometry between 1-3 and Fe3+ was established by Job's plot. The binding constants (Ka) were determined using the Benesi-Hildebrand plot. All the complexes are extremely more potent than cisplatin for in vitro antiproliferative activity towards the human breast cancer cells, HCC1937, MCF-7, and MDA-MB-231. The values of IC50 were in the range of 0.077-0.485 μM, and 1 exhibited the most effective IC50 against MDA-MB-231 cell line, the triple-negative breast cancer cell. Their lipophilicities (log P) were also examined to explain the penetration ability of the studied complexes towards cell barriers, and transport to the molecular target.
Collapse
Affiliation(s)
- Ekkapong Klaimanee
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Thitirat Temram
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Adisorn Ratanaphan
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand; Medical Science Research and Innovation Institute, Research and Development Office, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Dhassida Sooksawat
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubonratchathani University, Ubonratchathani, 34190, Thailand
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takumi Konno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan; Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yuthana Tantirungrotechai
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application and Division of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Kittisak Choojun
- Catalytic Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Nararak Leesakul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| |
Collapse
|
2
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Lu C, Li K, Xi H, Hua D, Li H, Gao F, Qiu L, Lin J. Dual-Targeting PET Tracers Enable Enzyme-Mediated Self-Assembly for the PET Imaging of Legumain Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44654-44664. [PMID: 37704192 DOI: 10.1021/acsami.3c07479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Legumain, a lysosomal cysteine protease overexpressed in a variety of tumors, has been considered a promising biomarker for various cancers. Precise detection of legumain activity in the lysosome represents an important strategy for early diagnosis and prognosis of tumors. Small-molecule probes with the property of target-enabled self-assembly hold great potential for molecular imaging. In this study, we reported two dual-targeting radiotracers ([18F]SF-AAN-M and [18F]SF-AAN-HEM) with a property of legumain-mediated self-assembly for positron emission tomography (PET) imaging. Both the radiotracers were synthesized with high labeling yield (>50%) and the radiochemical purity was over 99% via one-step straightforward 18F-labeling. Both tracers were efficiently activated by the reducing agent and legumain to self-assemble into aggregates and showed enhanced retention in legumain-overexpressed MDA-MB-468 cells and tumors, indicating that the introduction of lysosome-targeting morpholine increased the tumor uptake and extended the retention of radiotracers in legumain-overexpressed tumors. In addition, [18F]SF-AAN-HEM with a hydrophilic (histidine-glutamate)3 tag displayed significantly reduced liver uptake with no conspicuous reduction in tumor uptake, affording high signal-to-noise ratios (tumor/liver and tumor/muscle). All of these results suggest that dual-targeting tracer [18F]SF-AAN-HEM could provide a promising tool for in vivo monitoring legumain activity in tumors.
Collapse
Affiliation(s)
- Chunmei Lu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Di Hua
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Huirong Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Feng Gao
- Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
4
|
Guo S, Sun Y, Li Z. Lysosome Imaging Based on Fluorescent Carbon Dots. Methods Mol Biol 2023; 2566:37-43. [PMID: 36152240 DOI: 10.1007/978-1-0716-2675-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lysosomes play key roles in different cellular processes such as autophagy, phagocytosis, and apoptosis. Lysosomal dysfunction is related to many diseases. Fluorescence lysosome staining strategy is valuable for the researches on the lysosome involvement in different pathological diagnosis. Here we describe fluorescence lysosome staining methods with carbon dots for the identification of lysosomes in living and fixed cells.
Collapse
Affiliation(s)
- Shuo Guo
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Luengo A, Marzo I, Fernández‐Moreira V, Gimeno MC. Synthesis and antiproliferative study of phosphorescent multimetallic Re(I)/Au(I) complexes containing fused imidazo[4,5‐f]‐1,10‐phenanthroline core. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrés Luengo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| | - Isabel Marzo
- Departamento de Bioquímica y Biología Molecular Universidad de Zaragoza Zaragoza Spain
| | - Vanesa Fernández‐Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC‐Universidad de Zaragoza Zaragoza Spain
| |
Collapse
|
6
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
7
|
Hickey SM, Ung B, Bader C, Brooks R, Lazniewska J, Johnson IRD, Sorvina A, Logan J, Martini C, Moore CR, Karageorgos L, Sweetman MJ, Brooks DA. Fluorescence Microscopy-An Outline of Hardware, Biological Handling, and Fluorophore Considerations. Cells 2021; 11:35. [PMID: 35011596 PMCID: PMC8750338 DOI: 10.3390/cells11010035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology.
Collapse
Affiliation(s)
- Shane M. Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | - Ben Ung
- Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (C.B.); (R.B.); (J.L.); (I.R.D.J.); (A.S.); (J.L.); (C.M.); (C.R.M.); (L.K.); (M.J.S.); (D.A.B.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Hao L, Zhong YM, Tan CP, Mao ZW. Acidity-responsive phosphorescent metal complexes for cancer imaging and theranostic applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Wu KJ, Wu C, Chen F, Cheng SS, Ma DL, Leung CH. Time-Resolved Luminescent High-Throughput Screening Platform for Lysosomotropic Compounds in Living Cells. ACS Sens 2021; 6:166-174. [PMID: 33356166 DOI: 10.1021/acssensors.0c02046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomes are membrane-bound organelles that regulate protein degradation and cellular organelle recycling. Homeostatic alteration by lysosomotropic compounds has been suggested as a potential approach for the treatment of cancer. However, because of the high false-negative rate resulting from strong fluorescent background noise, few luminescent high-throughput screening methods for lysosomotropic compounds have been developed for cancer therapy. Imidazole is a five-membered heterocycle that can act within the acidic interior of lysosomes. To develop an efficient lysosomotropic compound screening system, we introduced an imidazole group to iridium-based complexes and designed a long-lifetime lysosomal probe to monitor lysosomal activity in living cells. By integrating time-resolved emission spectroscopy (TRES) with the novel iridium-based lysosomal probe, a high-throughput screening platform capable of overcoming background fluorescent interference in living cells was developed for discovering lysosomotropic drugs. As a proof-of-concept, 400 FDA/EMA-approved drugs were screened using the TRES system, revealing five compounds as potential lysosomotropic agents. Significantly, the most promising potent lysosomotropic compound (mitoxantrone) identified in this work would have showed less activity if screened using a commercial lysosomal probe because of interference from the intrinsic fluorescence of mitoxantrone. We anticipate that this TRES-based high-throughput screening system could facilitate the development of more lysosomotropic drugs by avoiding false results arising from the intrinsic fluorescence of both bioactive compounds and/or the cell background.
Collapse
Affiliation(s)
- Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Sha-Sha Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 999078, China
| |
Collapse
|
11
|
Zhang X, Fu Y, Liu J, Qian G, Zhang J, Zhang R, Xu ZP. A hydrogen peroxide activatable nanoprobe for light-controlled "double-check" multi-colour fluorescence imaging. NANOSCALE 2020; 12:22527-22533. [PMID: 33094759 DOI: 10.1039/d0nr04881j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new probe for precise and accurate bioimaging contributes significantly to advancing biomedical research for early disease diagnosis and treatment monitoring. Through wrapping a photochromic molecule (SP-Np-B) within a polymer nanoparticle, a new light-controlled multicolour fluorescence nanoprobe (Poly-SP-Np-B) is developed for precise fluorescence subcellular bioimaging. Poly-SP-Np-B shows an "OFF-ON" red-emitting fluorescence response upon alternate UV/Vis light irradiation. After activation by hydrogen peroxide (H2O2), a green-emitting Poly-SP-Np nanoparticle is generated, thus allowing light-controlled fluorescence response simultaneously, i.e., green and yellow switch upon alternate UV/Vis light irradiation for 10 and 20 s, respectively. Such a "blinking" fluorescence signal change is not possible by only using a photochromic molecule probe (SP-Np-B) with alternate UV/vis light irradiation for over 5 min. Poly-SP-Np-B has large isomerization kinetic constants (kSP-MR = 0.4543 s-1 and kMR-SP = 0.0809 s-1), excellent biocompatibility and lysosome distribution capability, enabling multicolour fluorescence imaging in live cells. With exo-/endogenous H2O2 activation in lysosomes, light-controlled "double-check" fluorescence imaging at the subcellular level is successfully achieved. More specifically, the change in fluorescence imaging is reversible in green, red and yellow channels in live cells upon excitation under alternate UV and visible light. This work thus provides a new strategy to develop switchable photochromic probes for precise fluorescence bioassay and bioimaging.
Collapse
Affiliation(s)
- Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Fan C, Pu S. A cyclometalated iridium(III) complex-based luminescent probe for HCO3− and CO32− detection and its application by test strips. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Liu HY, Zhang SQ, Cui MC, Gao LH, Zhao H, Wang KZ. pH-Sensitive Near-IR Emitting Dinuclear Ruthenium Complex for Recognition, Two-Photon Luminescent Imaging, and Subcellular Localization of Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:5420-5427. [PMID: 35021715 DOI: 10.1021/acsabm.0c00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dinuclear Ru(II) complex of [(bpy)2Ru(Hdip)Ru(H2bip)](ClO4)4 {bpy is 2,2'-bipyridine, Hdip is 2-(2,6-di(pyridin-2-yl)-pyridin-4-yl)-1H-imidazo[4,5-f]-[1,10]phenanthroline, and H2bip is 2,6-bis(imidazole-2-yl)-pyridine} was synthesized and characterized by elemental analysis, mass spectrometry, and 1H NMR spectroscopy. Spectrophotometric pH titrations in aqueous buffer and in vitro cell experiments indicated the response ability of the complex to pH fluctuations in the physiological pH range (6.0-8.0). The complex was found to be capable of differentiating live HeLa cells from healthy HEK293 cells by selectively accumulating in lysosomes of the HeLa cells. The low cytotoxicity (IC50 > 100 μM), a large Stokes shift (∼200 nm), strong near-IR emission at ∼700 nm, a relatively long excited state lifetime, high photostability, and solubility make this complex considerably promising in real-time tracking and visualization of lysosomes in live cells. More interestingly, the tumor cell-specific two-photon luminescent imaging properties also endow this Ru complex with potential for applications in high-resolution tumor imaging and luminescence-guided tumor resection.
Collapse
Affiliation(s)
- Hui-Yu Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Si-Qi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Meng-Chao Cui
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Li-Hua Gao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Hua Zhao
- School of Science, Beijing Technology and Business University, Key Laboratory of Cosmetic (Beijing Technology and Business University), China National Light Industry, Beijing 100048, China
| | - Ke-Zhi Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Ho PY, Ho CL, Wong WY. Recent advances of iridium(III) metallophosphors for health-related applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Guo S, Sun Y, Geng X, Yang R, Xiao L, Qu L, Li Z. Intrinsic lysosomal targeting fluorescent carbon dots with ultrastability for long-term lysosome imaging. J Mater Chem B 2020; 8:736-742. [DOI: 10.1039/c9tb02043h] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsic lysosomal targeting carbon dots were synthesized with ultrastability for long-term lysosome imaging of living cells and drug-induced apoptotic cells.
Collapse
Affiliation(s)
- Shuo Guo
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yuanqiang Sun
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Xin Geng
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ran Yang
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Lehui Xiao
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- College of Chemistry
- Nankai University
- Tianjin
| | - Lingbo Qu
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Zhaohui Li
- College of Chemistry
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
16
|
Qiu K, Zhu H, Rees TW, Ji L, Zhang Q, Chao H. Recent advances in lysosome-targeting luminescent transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Ma DL, Wong SY, Kang TS, Ng HP, Han QB, Leung CH. Iridium(III)-based chemosensors for the detection of metal ions. Methods 2019; 168:3-17. [DOI: 10.1016/j.ymeth.2019.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/15/2019] [Indexed: 01/10/2023] Open
|
18
|
Ma DL, NG HP, Wong SY, Vellaisamy K, Wu KJ, Leung CH. Iridium(iii) complexes as reaction based chemosensors for medical diagnostics. Dalton Trans 2018; 47:15278-15282. [DOI: 10.1039/c8dt03492c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This frontier article introduces recent developments and applications of iridium(iii) complexes as luminescent probes for ions and biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hing Pan NG
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Suk-Yu Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | | | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- China
| |
Collapse
|