1
|
Zhang J, Xu J, Zhang J, Lin Y, Li J, Chen D, Lin W, Yang C, Yi G. Poly(Photosensitizer-Prodrug) Unimolecular Micelles for Chemo-Photodynamic Synergistic Therapy of Antitumor and Antibacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14908-14921. [PMID: 39001842 DOI: 10.1021/acs.langmuir.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA)21 (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA. Camptothecin monomer (CPTMA) could achieve controlled release of the CPT due to the presence of responsively broken disulfide bonds. PEGMA enhanced the biocompatibility of micelles as a hydrophilic shell. Two βPECP with different lengths were synthesized by modulating reaction conditions and the proportion of monomers, which both were self-assembled to unimolecular micelles in water. βPECP unimolecular micelles with higher EOS-Y/CPT content exhibited more excellent 1O2 production, in vitro drug release efficiency, higher cytotoxicity, and superior antibacterial activity. Also, we carried out simulations of the self-assembly and CPT release process of micelles, which agreed with the experiments. This nanosystem, which combines antimicrobial and antitumor functions, provides new ideas for bacteria-mediated tumor clinical chemoresistance.
Collapse
Affiliation(s)
- Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianchang Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jiaying Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yibin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Duoqu Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China
| |
Collapse
|
2
|
Kawamura S, Kawasaki R, Hino S, Yamana K, Okuno M, Eto T, Ikeda A. Formulation of water-dispersible hydrophobic compound nanocomplexes with polypeptides via a supramolecular approach using a high-speed vibration milling technique. RSC Adv 2022; 12:32012-32019. [PMID: 36380925 PMCID: PMC9641674 DOI: 10.1039/d2ra06054j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
Polypeptides were used to solubilize functional hydrophobic molecules via a high-speed vibrational milling method. Poly-l-lysine and poly-γ-glutamic acid, which are polypeptides, were able to prepare more highly concentrated water-dispersible complexes of hydrophobic compounds, including fullerenes, organic dyes, and porphyrin derivatives, than conventional water solubilizers, such as cyclodextrins and pullulan. In addition, the polypeptide systems endowed the complexes with long-term stability and resistance against thermal stress, which is advantageous for industrial applications. Furthermore, complexes of polypeptides and porphyrin derivatives showed a photodynamic activity against cancer cells, and the current system improved the dispersibility and storability of guest molecules without compromising their functionality.
Collapse
Affiliation(s)
- Shogo Kawamura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Shodai Hino
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST 1-8-31 Midorigaoka Ikeda 563-8577 Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Masafumi Okuno
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Takuro Eto
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi Hiroshima 739-8527 Japan
| |
Collapse
|
3
|
Lu L, Cai X, Guo L, Ji H, Ren J, Ni H, Feng X. Fabrication of Quercitrin Nano Micellar Delivery System and Its Therapeutic Effect on Unexplained Recurrent Abortion. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared a quercitrin nano micellar delivery system in this study to evaluate its oral bioavailability. The optimal formulation of quercetin nano micelles was determined through an orthogonal test. Characteristics (size of particles-SOP, morphology, efficiency of encapsulation-EE
and stability) and the therapeutic property of quercitrin nano micelles on unexplained recurrent abortion (URSA) were evaluated. The SOP of quercitrin nano micelles was 111.88±3.70 nm with an EE of 95.66±0.57. A substantially increased release rate of quercetin from the micellar
system was observed in different dissolution media comparable to that of quercitrin. Also, through quercitrin micelles, the oral bioavailability of quercetin was increased by 15.45-fold compared to quercitrin solution. Significantly, quercetin could reduce the levels of LDH and SOD as well
as increase the level of MDA in serum restricted HTR-8/SVneo cells. Western blotting (WB) experiments showed that quercitrin had a protective effect on H2O2 induced oxidative stress injury of a human placental trophoblast HTR8-SVneo cell line. The developed nano micelles
are a potential carrier that could enhance the aqueous solubility, oral in vivo availability and potential therapeutic abortion effect of quercitrin.
Collapse
Affiliation(s)
- Lidan Lu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Ximei Cai
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Luqin Guo
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Hongjian Ji
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, China
| | - Jiajie Ren
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Haiyan Ni
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Xiaoling Feng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| |
Collapse
|
4
|
Hua C, Zhang Y, Liu Y. Enhanced Anticancer Efficacy of Chemotherapy by Amphiphilic Y-Shaped Polypeptide Micelles. Front Bioeng Biotechnol 2021; 9:817143. [PMID: 35036402 PMCID: PMC8758568 DOI: 10.3389/fbioe.2021.817143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Although the treatment modalities of cancers are developing rapidly, chemotherapy is still the primary treatment strategy for most solid cancers. The progress in nanotechnology provides an opportunity to upregulate the tumor suppression efficacy and decreases the systemic toxicities. As a promising nanoplatform, the polymer micelles are fascinating nanocarriers for the encapsulation and delivery of chemotherapeutic agents. The chemical and physical properties of amphiphilic co-polymers could significantly regulate the performances of the micellar self-assembly and affect the behaviors of controlled release of drugs. Herein, two amphiphilic Y-shaped polypeptides are prepared by the ring-opening polymerization of cyclic monomer l-leucine N-carboxyanhydride (l-Leu NCA) initiated by a dual-amino-ended macroinitiator poly(ethylene glycol) [mPEG-(NH2)2]. The block co-polypeptides with PLeu8 and PLeu16 segments could form spontaneously into micelles in an aqueous solution with hydrodynamic radii of 80.0 ± 6.0 and 69.1 ± 4.8 nm, respectively. The developed doxorubicin (DOX)-loaded micelles could release the payload in a sustained pattern and inhibit the growth of xenografted human HepG2 hepatocellular carcinoma with decreased systemic toxicity. The results demonstrated the great potential of polypeptide micellar formulations in cancer therapy clinically.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | | |
Collapse
|
5
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Park C, Meghani N, Loebenberg R, Cui JH, Cao QR, Lee BJ. Fatty acid chain length impacts nanonizing capacity of albumin-fatty acid nanomicelles: Enhanced physicochemical property and cellular delivery of poorly water-soluble drug. Eur J Pharm Biopharm 2020; 152:257-269. [PMID: 32422167 DOI: 10.1016/j.ejpb.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to design the ideal nanonizing vehicle for poorly water-soluble model curcumin (CCM) using fattigation-platform nanotechnology, and to investigate the effects of fatty acid salts chain length on nanonizing CCM and its efficient delivery to different cancer cells. HSA-fatty acid conjugates were synthesized by EDC/NHS coupling. Fattigation-platform nanomicelles (NMs), prepared by film hydration, exhibited uniform and spherical morphology, although, each NM varied in particle size, zeta potential, and critical micelle concentration according to the types of fatty acid. Preliminary solubility studies of albumin conjugates with 5 types of fatty acid salts of different chain lengths revealed that C14 exhibited the highest solubilization of CCM. CCM-loaded HSA-C14 NMs demonstrated the highest drug content (5.35 ± 0.48%) and loading efficiency (95.93 ± 1.87%) compared to other NMs. It exhibited enhanced drug release rate and reduced micelle size in biorelevant dissolution medium. Interestingly, this solubilization approach was well applied in poorly water-soluble docetaxel trihydrate (DTX). Preliminary solubility results of DTX was also corresponded to the stable nanonization phenomenon in biorelevant dissolution medium. Compared to the CCM EtOH solution, HSA-C14 NMs showed higher internalization in cancer cell lines A549 and MCF-7, and consequently, exhibited significantly increased cytotoxicity against both cell lines. Therefore, this study provides a new solubilization approach for poorly water-soluble drugs using fatty acid salts of different chain lengths and their micellar formations via nanonization, which could be a promising tool for targeted cancer therapy using poorly water-soluble drugs.
Collapse
Affiliation(s)
- Chulhun Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | | - Raimar Loebenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | - Jing-Hao Cui
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Qing-Ri Cao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
7
|
Yu C, Wang L, Xu Z, Teng W, Wu Z, Xiong D. Smart micelles self-assembled from four-arm star polymers as potential drug carriers for pH-triggered DOX release. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02108-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Zhang T, Ma X, Bai S, Wang Y, Zhang X, Lu Y, Wen F, Xue P, Kang Y, Xu Z. Reactive oxygen species-activatable camptothecin polyprodrug based dextran enhances chemotherapy efficacy by damaging mitochondria. J Mater Chem B 2020; 8:1245-1255. [PMID: 31957760 DOI: 10.1039/c9tb02199j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Low loading capacity, poor accumulation rate and weak permeability at tumor sites have been identified as the critical barriers for anti-cancer nanomedicines (ANMs). We herein reported a reactive oxygen species (ROS)-activatable ANM of dextran-b-P(CPTMA-co-OEGMA) (DCPT). It aimed to meet the above challenges for improving the therapeutic efficiency of chemotherapy. In this system, camptothecin (CPT) was selected as a chemotherapy drug and poly(ethylene glycol)methyl ether methacrylate (OEGMA) played the role of a hydrophilic block to enhance the water solubility of polyprodrug micelles. At high ROS levels in the tumor microenvironment, the micelles could be disassembled, and simultaneously, the anti-cancer drug of CPT would be released from the DCPT micelles. The 4T1-tumor growth would be greatly inhibited by these two DCPT polyprodrugs, with outstanding in vivo biosafety. The results of both in vitro and in vivo studies indicated the superior therapeutic effects of DCPT. The rational design of polyprodrug nanomedicines may serve as a promising strategy for the development of tumor microenvironment-responsive ANMs, thus improving chemotherapy efficacy.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xianbin Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yajun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoli Zhang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P. R. China.
| | - Yi Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P. R. China.
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
9
|
Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D, Lu Y, Xue P, Kang Y, Xu Z. A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater Sci 2020; 8:473-484. [PMID: 31755481 DOI: 10.1039/c9bm01692a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared to normal tissues, unique conditions in the tumor microenvironment, such as a lower pH, can induce accurate release of a drug into specific lesions. This strategy provides an efficient approach to overcome the issues of unexpected drug leakage and poor circulation stability, thereby reducing the side effects and enhancing the effect of cancer treatment. In this study, we designed a class of acid activatable supramolecular nano-prodrugs (DOM@DOX) with a bottlebrush architecture based on the dextran (DEX) polysaccharide, which connects with a hydrophilic polyethylene glycol chain by atom transfer radical polymerization and further conjugates with an anticancer drug doxorubicin (DOX) at the backbone of the copolymer via an acidity-responsive hydrazine bond. Furthermore, the DOM@DOX prodrug has a high drug loading up to 48 wt% for DOX, and the prodrug can maintain a stable nano-sized spherical shape in aqueous solution by a self-assembly strategy. In an acidic environment inside tumor cells, the hydrazine bond of the prodrug breaks, leading to the release of DOX from parental micelles. Owing to the small size of the carrier, the prodrug exhibits good intratumoral permeability, good circulation stability and significant tumor suppression efficiency in tumor-bearing mouse models, which is beneficial for the development of new generation nanomedicine for enhanced chemotherapy.
Collapse
Affiliation(s)
- Tian Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yajun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Xianbin Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, Shanghai Jiaotong University, No. 355 Luding Road, Shanghai, 200062, P.R. China
| | - Shuangyu Lv
- School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Die Jia
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yi Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China. and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
10
|
Zhang X, Li D, Huang J, Ou K, Yan B, Shi F, Zhang J, Zhang J, Pang J, Kang Y, Wu J. Screening of pH-responsive long-circulating polysaccharide–drug conjugate nanocarriers for antitumor applications. J Mater Chem B 2019; 7:251-264. [PMID: 32254550 DOI: 10.1039/c8tb02474j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Schematic illustration of the development of long-circulating pH-responsive polysaccharide–DOX prodrug nanoparticles for antitumor applications.
Collapse
|
11
|
Zhang X, Zhang R, Huang J, Luo M, Chen X, Kang Y, Wu J. Albumin enhances PTX delivery ability of dextran NPs and therapeutic efficacy of PTX for colorectal cancer. J Mater Chem B 2019. [DOI: 10.1039/c9tb00181f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nanoassemblies of Dex6k–BSA–PTX and the pH-responsive drug release for anti-tumor applications in vivo.
Collapse
Affiliation(s)
- Xinyu Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Huang
- Department of Colorectal Surgery
- The Sixth Affiliated Hospital
- Sun Yat-sen University
- Guangzhou
- China
| | - Moucheng Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Xuewen Chen
- Agriculture and Forestry Yan Jiaxian Innovative Class
- Plant Protection
- Fujian Agriculture and Forestry University
- Fuzhou
- China
| | - Yang Kang
- The Seventh Affiliated Hospital
- Sun Yat-sen University
- Shenzhen
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|