1
|
Fu Y, Jang MS, Liu C, Li Y, Lee JH, Yang HY. Oxygen-Generating Organic/Inorganic Self-Assembled Nanocolloids for Tumor-Activated Dual-Model Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478563 DOI: 10.1021/acsami.3c07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Changling Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| | - Yi Li
- College of Materials and Textile Engineering & Nanotechnology Research Institute (NRI), Jiaxing University, Jiaxing City 314001, Zhejiang Province, PR China
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University, School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, The Republic of Korea
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, Jilin Province, PR China
| |
Collapse
|
2
|
Liu C, Wang Y, Wang S, Xu P, Liu R, Han D, Wei Y. A Star-Shaped Copolymer with Tetra-Hydroxy-Phenylporphyrin Core and Four PNIPAM- b-PMAGA Arms for Targeted Photodynamic Therapy. Polymers (Basel) 2023; 15:polym15030509. [PMID: 36771810 PMCID: PMC9919623 DOI: 10.3390/polym15030509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The novel thermosensitive star-shaped tetra-hydroxy-phenylporphyrin-cored (THPP) double hydrophilic poly(N-isopropylacrylamide)-b-poly(methylacrylamide glucose) block copolymers (THPP-(PNIPAM-b-PMAGA)4) were synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization. Notably, the low critical solution temperatures (LCSTs) of THPP-(PNIPAM-b-PMAGA)4 were above normal body temperature (37 °C) which depended on the hydrophilic PMAGA contents of copolymers. When the temperature was higher than the LCST of the copolymer, the copolymer could be neutralized into micelles in aqueous and could be coated with antitumor drugs and released around tumor cells. The MTT study indicated that THPP-(PNIPAM-b-PMAGA)4 had a low toxicity to L929 and HeLa cells in the absence of light. However, THPP-(PNIPAM-b-PMAGA)4 showed a high toxicity with HeLa cells under light irradiation which could be used as a potential photosensitizer for photodynamic therapy (PDT). In addition, THPP-(PNIPAM-b-PMAGA)4 showed specific a recognition function with Concanavalin A (Con A) to achieve active targeted drug delivery. This work provides a new approach for the development of tumor targeting and chemotherapy/PDT.
Collapse
Affiliation(s)
- Changling Liu
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Yirong Wang
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Siyu Wang
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Pengcheng Xu
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Renning Liu
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Dandan Han
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
- Correspondence: (D.H.); (Y.W.)
| | - Yen Wei
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
- Correspondence: (D.H.); (Y.W.)
| |
Collapse
|
3
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
4
|
Fu Y, Jang MS, Wang N, Li Y, Wu TP, Lee JH, Lee DS, Yang HY. Dual activatable self-assembled nanotheranostics for bioimaging and photodynamic therapy. J Control Release 2020; 327:129-139. [PMID: 32771476 DOI: 10.1016/j.jconrel.2020.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/03/2023]
Abstract
Multifunctional nanosystems that can transport therapeutic and diagnostic agents into tumor sites and activate their respective functions via tumor-microenvironment recognition are highly desirable for clinical applications. We fabricated pH and redox dual-activatable self-assembled nanotheranostics (named as DA-SNs) via coordination-driven self-assembly of chlorin e6 (Ce6) disulfide-linked pH sensitive polymer ligand, poly (isobutylene-alt-maleic anhydride-graft-methoxy-poly (ethyleneglycol)-graft-imidazole-graft-Cystamine-Ce6) [PIMA-mPEG-API-SS-Ce6], and gadolinium ions (Gd3+). DA-SNs exhibited uniform particle size of ~48 nm, excellent stability, and inherent biosafety. Negatively charged DA-SNs could prolong blood circulation time (t1/2 = 2.91 h) and improve tumor accumulation. Moreover, DA-SNs could undergo surface charge switch from negative charge to positive one in a slightly acidic tumor extracellular environment (pH 6.8), thus enhancing cellular uptake. After entering tumor cells, fluorescence, photodynamic therapeutic activity, and T1MR contrast from DA-SNs could be activated within this intracellular environment with lowered pH and high level of GSH. Importantly, human tumors implanted in mice could be successfully visualized via distinct pH and redox dual-sensitive T1MR contrast and fluorescence imaging, indicating that DA-SNs could serve as a dual-modal MR/fluorescence imaging probe for tumor-targeting diagnosis. In addition, DA-SNs exhibited superior photodynamic therapeutic efficiency with negligible side effects. Therefore, this DA-SN shows great promise for synergistic photodynamic therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Nannan Wang
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Yi Li
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, PR China
| | - Te Peng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China.
| |
Collapse
|
5
|
A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy. J Colloid Interface Sci 2020; 573:263-277. [DOI: 10.1016/j.jcis.2020.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 11/18/2022]
|
6
|
Farzin A, Etesami SA, Quint J, Memic A, Tamayol A. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Adv Healthc Mater 2020; 9:e1901058. [PMID: 32196144 PMCID: PMC7482193 DOI: 10.1002/adhm.201901058] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/15/2020] [Indexed: 12/16/2022]
Abstract
There is urgency for the development of nanomaterials that can meet emerging biomedical needs. Magnetic nanoparticles (MNPs) offer high magnetic moments and surface-area-to-volume ratios that make them attractive for hyperthermia therapy of cancer and targeted drug delivery. Additionally, they can function as contrast agents for magnetic resonance imaging (MRI) and can improve the sensitivity of biosensors and diagnostic tools. Recent advancements in nanotechnology have resulted in the realization of the next generation of MNPs suitable for these and other biomedical applications. This review discusses methods utilized for the fabrication and engineering of MNPs. Recent progress in the use of MNPs for hyperthermia therapy, controlling drug release, MRI, and biosensing is also critically reviewed. Finally, challenges in the field and potential opportunities for the use of MNPs toward improving their properties are discussed.
Collapse
Affiliation(s)
- A. Farzin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - S. Alireza Etesami
- Department of Mechanical Engineering, The University of Memphis. Memphis, TN 38152, USA
| | - Jacob Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Adnan Memic
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Ali Tamayol
- Division of Engineering in Medicine Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| |
Collapse
|
7
|
Li Y, Wang N, Huang X, Li F, Davis TP, Qiao R, Ling D. Polymer-Assisted Magnetic Nanoparticle Assemblies for Biomedical Applications. ACS APPLIED BIO MATERIALS 2019; 3:121-142. [DOI: 10.1021/acsabm.9b00896] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Xumin Huang
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
8
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
9
|
Liu C, Li Y, Li Y, Duan Q. Preparation of a star-shaped copolymer with porphyrin core and four PNIPAM-b-POEGMA arms for photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:74-82. [DOI: 10.1016/j.msec.2018.12.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 10/31/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023]
|
10
|
Yang HY, Jang MS, Li Y, Fu Y, Wu TP, Lee JH, Lee DS. Hierarchical tumor acidity-responsive self-assembled magnetic nanotheranostics for bimodal bioimaging and photodynamic therapy. J Control Release 2019; 301:157-165. [PMID: 30905667 DOI: 10.1016/j.jconrel.2019.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Nanosized self-assemblies built from inorganic nanoparticles and polymer ligands have the potential to generate personalized theranostics systems for diagnostic imaging and cancer therapy. However, most of the theranostics systems suffer from poor targeting activity, insensitive diagnosis and drug leakage, leading to poor treatment results. In this study, a hierarchical tumor acidity-responsive magnetic nanobomb (termed HTAMN) was developed for photodynamic therapy and diagnostic imaging. The HTAMNs were formed through the self-assembly of chlorin e6 (Ce6)-functionalized polypeptide ligand, methoxy poly (ethyleneglycol)-block-poly (dopamine-ethylenediamine-2,3-dimethylmaleic anhydride)-L-glutamate-Ce6 [mPEG-b-P (Dopa-Ethy-DMMA)LG-Ce6] and superparamagnetic iron oxide nanoparticles (SPIONs). Negatively charged HTAMNs circulate in the blood for prolonged periods and promote tumor retention by passive targeting to the tumor. Once the HTAMNs arrive at the tumor location, the acidic extracellular tumor environment reverses the surface charge of the HTAMNs, resulting in tumor accumulation and cellular uptake. Moreover, in response to the more acidic environment inside cells, the photosensitizers are activated resulted in enhanced diagnostic imaging and cancer treatment. The in vitro and in vivo results indicate the effective tumor accumulation, internalization, diagnostic sensitivity and superior photodynamic therapy effect of the HTAMNs. Therefore, designing smart HTAMNs can promote the rapid development of cancer theranostics for clinical implementation.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yi Li
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Te Peng Wu
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea.
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|