1
|
Feng C, Li Y, Luo Y, Zhang L, Zong Y, Zhao K. Mechanisms of Hydrophobic Recovery of Poly(dimethylsiloxane) Elastomers after Plasma/Corona Treatments: A Minireview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39466172 DOI: 10.1021/acs.langmuir.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Plasma/corona treatment could alter the wettability of a poly(dimethylsiloxane) (PDMS) surface from being hydrophobic to being hydrophilic, which has attracted many researchers' attention. However, the treated surface will gradually recover its hydrophobicity as it ages. To understand the recovery, many studies have been performed. Although there is still no general consensus on the recovery mechanisms, several models have been proposed that can explain the reported wetting behavior of hydrophobic recovery. In this minireview, we summarized the reported mechanisms underlying the hydrophobicity-recovery of oxidized PDMS surfaces, which are certainly affected by varied factors including temperature, aging time, stored conditions, and treatment conditions. We hope this minireview can give beginners in the field of microfluidics a better understanding on the various mechanisms that contribute to the hydrophobic recovery of PDMS surfaces and thus take appropriate measures to efficiently maintain the surface wettability of oxidized PDMS chips to prolong their performance.
Collapse
Affiliation(s)
- Chunying Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yanran Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
2
|
Wu Q, Guo S, Liang X, Sun W, Lei J, Pan L, Liu X, Chen H. Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity. Biomacromolecules 2024. [PMID: 39190804 DOI: 10.1021/acs.biomac.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.
Collapse
Affiliation(s)
- Qiulian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lisha Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
3
|
Parveen S, Basu M, Chowdhury P, Dhara T, DasGupta S, Das S, Dasgupta S. Surface modification of polydimethylsiloxane by the cataractous eye protein isolate. Int J Biol Macromol 2024; 260:129470. [PMID: 38237817 DOI: 10.1016/j.ijbiomac.2024.129470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.
Collapse
Affiliation(s)
- Sultana Parveen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mainak Basu
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Prasun Chowdhury
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Trina Dhara
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunando DasGupta
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Soumen Das
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India; School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
4
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
5
|
Cao X, Liu X, Liu Y, Ma R, Sun S. The effect of curvature on chondrocytes migration and bone mesenchymal stem cells differentiation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xing Cao
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Xiangli Liu
- Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, Department of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen China
| | - Yan Liu
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Rui Ma
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
- Research Center for Water Science and Environmental Engineering Shenzhen University Shenzhen China
| |
Collapse
|
6
|
Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomater Sci Eng 2020; 6:2847-2854. [PMID: 33463289 DOI: 10.1021/acsbiomaterials.0c00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland. The fibers generated using this device exhibited aligned hierarchical structure with fiber mechanical properties superior to fibers derived from more traditional spinning approaches with regenerated silk solutions. Besides the improved mechanical properties, Raman spectroscopic results indicated similarly aligned structures to native fibers and active control of cell proliferation, migration, and aggregate orientation. The results indicate the feasibility of developing bioactive silk fiber materials with hierarchical structures to facilitate utility in a range of cell and tissue regeneration scenarios.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Jesorka A, Põldsalu I, Gözen I. Microfluidic technology for investigation of protein function in single adherent cells. Methods Enzymol 2019; 628:145-172. [PMID: 31668227 DOI: 10.1016/bs.mie.2019.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Instrumental techniques and associated methods for single cell analysis, designed to investigate and measure a broad range of cellular parameters in search of unique features, address key limitations of conventional cell-based assays with their ensemble average response. While many different single cell techniques exist for suspension cultures, which can process and characterize large numbers of individual cells in rapid succession, the access to surface-immobilized cells in typical 2D and 3D culture environments remains challenging. Open space microfluidics has created new possibilities in this area, allowing for exclusive access to single cells in adherent cultures, even at high confluency. In this chapter, we briefly review new microtechnologies for the investigation of protein function in single adherent cells, and present an overview over related recent applications of the multifunctional pipette (Biopen), a microfluidic multi-solution dispensing system that uses hydrodynamic confinement in open volume environments in order to establish a superfusion zone over selected single cells in adherent cultures.
Collapse
Affiliation(s)
- Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden.
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Irep Gözen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden; Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|