1
|
Murugan U, Gusain D, Balasubramani B, Srivastava S, Ganesh S, Ambattu Raghavannambiar S, Ramaraj K. A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces. BIOFOULING 2024:1-23. [PMID: 39422280 DOI: 10.1080/08927014.2024.2414922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.
Collapse
Affiliation(s)
- Udhayakumar Murugan
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Dakshesh Gusain
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Baskar Balasubramani
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sagar Srivastava
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sai Ganesh
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | | | - Kannan Ramaraj
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Chen K, Feng X, Guo X, Zhang J, Huang Y, Zhang X, Shang B, Chen D. Water-Soluble, Self-Healing, and Debonding Primer for the Interface between Silicone Leather and Polydimethylsiloxane Composites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11684-11694. [PMID: 38781129 DOI: 10.1021/acs.langmuir.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The exceptional hydrophobicity and antifouling properties of polydimethylsiloxane (PDMS) composites have attracted extensive interest as a result of low surface energy. However, PDMS composites are hardly bound by common primers, greatly limiting their practical applications. To address this issue, an EPMS/VTMS (EV) primer synthesized by hydrolytic polycondensation of 3-[(2,3)-epoxypropoxypropyl]methyldiethoxysilane (EPMS) and vinyltrimethoxysilane (VTMS) in acidic conditions is proposed. Interestingly, the EV primer exhibits exceptional reactivity, self-healing capabilities, and strong adhesion to various substrates, including metals, plastics, and glass. The bonding aluminum plates are easily debonded by immersion in water without any residue left. Subsequently, the EV primer has been applied to the interface between silicone leather and the PDMS composite. Results show that the bonding strength for the silicone leather coated with the EV/PDMS composite is 16 times higher than that of the silicone leather modified with the PDMS composite. Meanwhile, the modified silicone leather exhibits impressive antifouling performance, including aqueous and oily stains, appreciable breathability, and excellent wear resistance, even if suffering from 20 000 cycles of abrasion. These excellent advantages for the modified silicone leather should be attributable to the synergistic effect of the EV primer and the PDMS composite. These findings pave the way to develop an ecofriendly debonding primer for PDMS composites, greatly facilitating applications of silicone leather.
Collapse
Affiliation(s)
- Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
| | - Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430073, People's Republic of China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430073, People's Republic of China
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
| | - Xiaoyuan Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
| | - Bin Shang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430073, People's Republic of China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, People's Republic of China
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430073, People's Republic of China
| |
Collapse
|
3
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
4
|
Romeu MJ, Mergulhão F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023; 11:1568. [PMID: 37375070 DOI: 10.3390/microorganisms11061568] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Marine biofouling is an undeniable challenge for aquatic systems since it is responsible for several environmental and ecological problems and economic losses. Several strategies have been developed to mitigate fouling-related issues in marine environments, including developing marine coatings using nanotechnology and biomimetic models, and incorporating natural compounds, peptides, bacteriophages, or specific enzymes on surfaces. The advantages and limitations of these strategies are discussed in this review, and the development of novel surfaces and coatings is highlighted. The performance of these novel antibiofilm coatings is currently tested by in vitro experiments, which should try to mimic real conditions in the best way, and/or by in situ tests through the immersion of surfaces in marine environments. Both forms present their advantages and limitations, and these factors should be considered when the performance of a novel marine coating requires evaluation and validation. Despite all the advances and improvements against marine biofouling, progress toward an ideal operational strategy has been slow given the increasingly demanding regulatory requirements. Recent developments in self-polishing copolymers and fouling-release coatings have yielded promising results which set the basis for the development of more efficient and eco-friendly antifouling strategies.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081102. [PMID: 36009971 PMCID: PMC9404944 DOI: 10.3390/antibiotics11081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/01/2023] Open
Abstract
Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.
Collapse
|
6
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
7
|
Jin J, Bhat R, Mangal U, Seo JY, Min Y, Yu J, Kim DE, Kuroda K, Kwon JS, Choi SH. Molecular weight tuning optimizes poly(2-methoxyethyl acrylate) dispersion to enhance the aging resistance and anti-fouling behavior of denture base resin. Biomater Sci 2022; 10:2224-2236. [PMID: 35344987 DOI: 10.1039/d2bm00053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(methyl methacrylate) (PMMA)-based denture base resins easily develop oral bacterial and fungal biofilms, which may constitute a significant health risk. Conventional bacterial-resistant additives and coatings often cause undesirable changes in the resin. Reduced bacterial resistance over time in the harsh oral environment is a major challenge in resin development. Poly(2-methoxyethyl acrylate) (PMEA) has anti-fouling properties; however, due to the oily/rubbery state of this polymer, and its surface aggregation tendency in a resin mixture, its direct use as a resin additive is limited. This study aimed to optimize the use of PMEA in dental resins. Acrylic resins containing a series of PMEA polymers with various molecular weights (MWs) at different concentrations were prepared, and the mechanical properties, surface gloss, direct transmittance, and cytotoxicity were evaluated, along with the distribution of PMEA in the resin. Resins with low-MW PMEA (2000 g mol-1) (PMEA-1) at low concentrations satisfied the clinical requirements for denture resins, and the PMEA was homogeneously distributed. The anti-fouling performance of the resin was evaluated for protein adsorption, bacterial and fungal attachment, and saliva-derived biofilm formation. The PMEA-1 resin most effectively inhibited biofilm formation (∼50% reduction in biofilm mass and thickness compared to those of the control). Post-aged resins maintained their mechanical properties and anti-fouling activity, and polished surfaces had the same anti-biofilm behavior. Based on wettability and tribological results, we propose that the PMEA additive creates a non-stick surface to inhibit biofilm formation. This study demonstrated that PMEA additives can provide a stable and biocompatible anti-fouling surface, without sacrificing the mechanical properties and aesthetics of denture resins.
Collapse
Affiliation(s)
- Jie Jin
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Rajani Bhat
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Utkarsh Mangal
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Ji-Young Seo
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - YouJin Min
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jaehun Yu
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Dae-Eun Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kenichi Kuroda
- Department of Biologic & Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48109, USA
| | - Jae-Sung Kwon
- BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea. .,BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Han B, Wang H, Bing W, Jin H. Bacterial adhesion properties of parylene C and D deposited on polydimethylsiloxane. NEW J CHEM 2022. [DOI: 10.1039/d1nj06223a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parylene, a widely used protective coating, has received significant attention in medical applications. In this study, the bacterial adhesion properties of parylene C and D coated on polydimethylsiloxane (PDMS) substrates,...
Collapse
|
9
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
10
|
Staneva AD, Dimitrov DK, Gospodinova DN, Vladkova TG. Antibiofouling Activity of Graphene Materials and Graphene-Based Antimicrobial Coatings. Microorganisms 2021; 9:1839. [PMID: 34576733 PMCID: PMC8472838 DOI: 10.3390/microorganisms9091839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial adhesion and biofilm formation is a common, nondesirable phenomenon at any living or nonliving material surface in contact with microbial species. Despite the enormous efforts made so far, the protection of material surfaces against microbial adhesion and biofilm formation remains a significant challenge. Deposition of antimicrobial coatings is one approach to mitigate the problem. Examples of such are those based on heparin, cationic polymers, antimicrobial peptides, drug-delivering systems, and other coatings, each one with its advantages and shortcomings. The increasing microbial resistance to the conventional antimicrobial treatments leads to an increasing necessity for new antimicrobial agents, among which is a variety of carbon nanomaterials. The current review paper presents the last 5 years' progress in the development of graphene antimicrobial materials and graphene-based antimicrobial coatings that are among the most studied. Brief information about the significance of the biofouling, as well as the general mode of development and composition of microbial biofilms, are included. Preparation, antibacterial activity, and bactericidal mechanisms of new graphene materials, deposition techniques, characterization, and parameters influencing the biological activity of graphene-based coatings are focused upon. It is expected that this review will raise some ideas for perfecting the composition, structure, antimicrobial activity, and deposition techniques of graphene materials and coatings in order to provide better antimicrobial protection of medical devices.
Collapse
Affiliation(s)
- Anna D. Staneva
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| | - Dimitar K. Dimitrov
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| | - Dilyana N. Gospodinova
- Faculty of Electrical Engineering, Technical University-Sofia, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria;
| | - Todorka G. Vladkova
- Laboratory for Advanced Materials Research (LAMAR), University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd, 1756 Sofia, Bulgaria; (A.D.S.); (D.K.D.)
| |
Collapse
|
11
|
Song F, Zhang L, Chen R, Liu Q, Liu J, Yu J, Liu P, Duan J, Wang J. Bioinspired Durable Antibacterial and Antifouling Coatings Based on Borneol Fluorinated Polymers: Demonstrating Direct Evidence of Antiadhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33417-33426. [PMID: 34250807 DOI: 10.1021/acsami.1c06030] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Substituting natural products for traditional poison-killing antifouling agents is an efficient and promising method to alleviate the increasingly serious ecological crisis and aggravate the loss due to marine biofouling. Herein, the successful synthesis of poly(methyl methacrylate-co-ethyl acrylate-co-hexafluorobutyl methacrylate-co-isobornyl methacrylate) copolymer (PBAF) with borneol monomers and fluorine by a free radical polymerization method is reported. The PBA0.09F coating exhibits outstanding antibacterial and antifouling activity, achieving 98.2% and 92.3% resistance to Escherichia coli and Staphylococcus aureus, respectively, and the number of Halamphora sp. adhesion is only 26 (0.1645 mm2) in 24 h. This remarkable antibacterial and antifouling performance is attributed to the incorporation of fluorine components into the copolymer, which induces a low surface energy and hydrophobicity and the complex molecular structure of the natural nontoxic antifouling agent borneol. In addition, the results showed that the contents of the adhesion-related proteins mfp-3, mfp-5, and mfp-6 were significantly reduced, which proved that natural substances affect the secretion of biological proteins. Importantly, the PBAF coating exhibits excellent environmental friendliness and long-term stability. The antifouling mechanism is clarified, and an effective guide for an environmentally friendly antifouling coating design is proposed.
Collapse
Affiliation(s)
- Fan Song
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
- Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd., Hainan 572427, China
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - PeiLi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jizhou Duan
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
12
|
Díez-Pascual AM, Luceño-Sánchez JA. Antibacterial Activity of Polymer Nanocomposites Incorporating Graphene and Its Derivatives: A State of Art. Polymers (Basel) 2021; 13:2105. [PMID: 34206821 PMCID: PMC8271513 DOI: 10.3390/polym13132105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
The incorporation of carbon-based nanostructures into polymer matrices is a relevant strategy for producing novel antimicrobial materials. By using nanofillers of different shapes and sizes, and polymers with different characteristics, novel antimicrobial nanocomposites with synergistic properties can be obtained. This article describes the state of art in the field of antimicrobial polymeric nanocomposites reinforced with graphene and its derivatives such as graphene oxide and reduced graphene oxide. Taking into account the vast number of articles published, only some representative examples are provided. A classification of the different nanocomposites is carried out, dividing them into acrylic and methacrylic matrices, biodegradable synthetic polymers and natural polymers. The mechanisms of antimicrobial activity of graphene and its derivatives are also reviewed. Finally, some applications of these antimicrobial nanocomposites are discussed. We aim to enhance understanding in the field and promote further work on the development of polymer-based antimicrobial nanocomposites incorporating graphene-based nanomaterials.
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | | |
Collapse
|
13
|
Liu M, Li S, Wang H, Jiang R, Zhou X. Research progress of environmentally friendly marine antifouling coatings. Polym Chem 2021. [DOI: 10.1039/d1py00512j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The antifouling mechanisms and research progress in the past three years of environmentally friendly marine antifouling coatings are introduced in this work.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Shaonan Li
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Hao Wang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Rijia Jiang
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| | - Xing Zhou
- School of Chemistry and Life Sciences
- Suzhou University of Science andTechnology
- Suzhou 215009
- China
| |
Collapse
|
14
|
Tian L, Yin Y, Bing W, Jin E. Antifouling Technology Trends in Marine Environmental Protection. JOURNAL OF BIONIC ENGINEERING 2021; 18:239-263. [PMID: 33815489 PMCID: PMC7997792 DOI: 10.1007/s42235-021-0017-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Marine fouling is a worldwide problem, which is harmful to the global marine ecological environment and economic benefits. The traditional antifouling strategy usually uses toxic antifouling agents, which gradually exposes a serious environmental problem. Therefore, green, long-term, broad-spectrum and eco-friendly antifouling technologies have been the main target of engineers and researchers. In recent years, many eco-friendly antifouling technologies with broad application prospects have been developed based on the low toxicity and non-toxicity antifouling agents and materials. In this review, contemporary eco-friendly antifouling technologies and materials are summarized into bionic antifouling and non-bionic antifouling strategies (2000-2020). Non-bionic antifouling technologies mainly include protein resistant polymers, antifoulant releasing coatings, foul release coatings, conductive antifouling coatings and photodynamic antifouling technology. Bionic antifouling technologies mainly include the simulated shark skin, whale skin, dolphin skin, coral tentacles, lotus leaves and other biology structures. Brief future research directions and challenges are also discussed in the end, and we expect that this review would boost the development of marine antifouling technologies.
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- Weihai Institute for Bionics-Jilin University, Weihai, 264207 China
| | - Yue Yin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 China
| | - E. Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022 China
| |
Collapse
|
15
|
Abstract
Graphene materials (GMs) are being investigated for multiple microbiological applications because of their unique physicochemical characteristics including high electrical conductivity, large specific surface area, and robust mechanical strength. In the last decade, studies on the interaction of GMs with bacterial cells appear conflicting. On one side, GMs have been developed to promote the proliferation of electroactive bacteria on the surface of electrodes in bioelectrochemical systems or to accelerate interspecies electron transfer during anaerobic digestion. On the other side, GMs with antibacterial properties have been synthesized to prevent biofilm formation on membranes for water treatment, on medical equipment, and on tissue engineering scaffolds. In this review, we discuss the mechanisms and factors determining the positive or negative impact of GMs on bacteria. Furthermore, we examine the bacterial growth-promoting and antibacterial applications of GMs and debate their practicability.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
16
|
Shan Y, Zhou Z, Bai H, Wang T, Liu L, Zhao X, Huang Y. Recovery of the self-cleaning property of silicon elastomers utilizing the concept of reversible coordination bonds. SOFT MATTER 2020; 16:8473-8481. [PMID: 32820790 DOI: 10.1039/d0sm01264e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stretchable elastomers with superhydrophobic surfaces and self-cleaning abilities are fabricated for use in wearable electronics. However, scratches or ruptures are inevitable on these elastomers, thus deteriorating their self-cleaning ability. To solve this problem, in this work, we explored the ability of a self-healing silicon elastomer to recover its self-cleaning property. A cross-linked silicon elastomer (Zn-IC-PDMS) was fabricated by incorporating imidazole-zinc coordination bonds. The superhydrophobic Zn-IC-PDMS surface was synthesized by sequentially spraying polystyrene (PS) and silica particles on it to form a micro/nano complex structure. Our study shows that the surface of the elastomer exhibited a high water-contact angle (CA) (155°), low sliding angle (SA) (∼3°), and self-cleaning ability. In addition, the surface rapidly recovered its self-cleaning ability at room temperature after ruptures had been formed across the elastomer. SEM images and photographs revealed that the recovery of the self-cleaning ability was attributed to the self-healing behavior of the Zn-IC-PDMS.
Collapse
Affiliation(s)
- Yuxing Shan
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Zhi Zhou
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Haoming Bai
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Ting Wang
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Lili Liu
- School of Material Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yawen Huang
- State Key Laboratory of Environmental-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
17
|
Selim MS, El-Safty SA, Shenashen MA, Higazy SA, Elmarakbi A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J Mater Chem B 2020; 8:3701-3732. [DOI: 10.1039/c9tb02119a] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces.
Collapse
Affiliation(s)
- Mohamed S. Selim
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Sherif A. El-Safty
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
| | - Mohamed A. Shenashen
- National Institute for Materials Science (NIMS)
- Ibaraki-ken 305-0047
- Japan
- Petroleum Application Department
- Egyptian Petroleum Research Institute
| | - Shimaa A. Higazy
- Petroleum Application Department
- Egyptian Petroleum Research Institute
- Cairo
- Egypt
| | - Ahmed Elmarakbi
- Department of Mechanical & Construction Engineering
- Faculty of Engineering and Environment
- Northumbria University
- Newcastle upon Tyne
- UK
| |
Collapse
|
18
|
Jin H, Bing W, Tian L, Wang P, Zhao J. Combined Effects of Color and Elastic Modulus on Antifouling Performance: A Study of Graphene Oxide/Silicone Rubber Composite Membranes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2608. [PMID: 31426289 PMCID: PMC6720792 DOI: 10.3390/ma12162608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/14/2019] [Indexed: 12/05/2022]
Abstract
Biofouling is a significant maritime problem because the growth of fouling organisms on the hulls of ships leads to very high economic losses every year. Inspired by the soft skins of dolphins, we prepared graphene oxide/silicone rubber composite membranes in this study. These membranes have low surface free energies and adjustable elastic moduli, which are beneficial for preventing biofouling. Diatom attachment studies under static conditions revealed that color has no effect on antifouling behavior, whereas the studies under hydrodynamic conditions revealed that the combined effects of color and elastic modulus determine the antifouling performance. The experimental results are in accordance with the "harmonic motion effect" theory proposed by us, and we also provide a supplement to the theory in this paper. On the basis of the diatom attachment test results, the membrane with 0.36 wt % of graphene oxide showed excellent antifouling performance, and is promising in practical applications. The results confirmed that the graphene oxide and graphene have similar effect to enhance silicone rubber antifouling performance. This study provides important insight for the design of new antifouling coatings; specifically, it indicates that lighter colors and low Young's moduli provide superior performance. In addition, this study provides a reference for the application of graphene oxide as fillers to enhance the composite antifouling performance.
Collapse
Affiliation(s)
- Huichao Jin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- College of Physics, Jilin University, Changchun 130012, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Peng Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
19
|
Tian L, Jin E, wang J, Wang X, Bing W, Jin H, Zhao J, Ren L. Exploring the antifouling effect of elastic deformation by DEM–CFD coupling simulation. RSC Adv 2019; 9:40855-40862. [PMID: 35540083 PMCID: PMC9076254 DOI: 10.1039/c9ra06761b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/11/2020] [Accepted: 11/25/2019] [Indexed: 01/05/2023] Open
Abstract
The influence of elastic deformation and elastic modulus on the release of adhered bacteria was investigated in this paper. Four silicone elastomers (SE) with different elastic moduli and one rigid polystyrene sheet were prepared to verify the antifouling effect of elastic deformation. The SE film has an elastic deformation effect under the stimulus of fluid medium, which makes the surface unstable. That could reduce the adhesion of fouling organisms and provide a foul-release basis. Distinct anti-adhesion properties were observed in our study in that cells more easily adhered to the rigid surface than the elastic surfaces under hydrodynamic conditions. However, the bacterial attachment test showed a similar antifouling performance of SE and the rigid surface under static conditions. To investigate the anti-adhesion ability of the elastic surface and rigid surface, the bacterial adhesive kinetics were studied by Discrete Element Method (DEM)–Computational Fluid Dynamics (CFD) coupling simulation. Results indicated the number of bacteria adhering on the elastic wall was significantly lower than on the rigid wall. And as the elastic modulus increased, the bacterial adhesion increased accordingly within a certain range. This work should not only enhance understanding of elastomer-based antifouling materials, but also facilitate the design and construction of other types non-toxic foul-release materials. The bacterial adhesive kinetics with different morphology on elastic surface and rigid surface was studied by DEM–CFD coupling simulation.![]()
Collapse
Affiliation(s)
- Limei Tian
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - E. Jin
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - Jianfu wang
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - Xiaoming Wang
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - Wei Bing
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
- Advanced Institute of Materials Science
| | - Huichao Jin
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education)
- Jilin University
- Changchun 130022
- China
| |
Collapse
|