1
|
Burnat D, Janik M, Kwietniewski N, Martychowiec A, Musolf P, Bartnik K, Koba M, Rygiel TP, Niedziółka-Jönsson J, Śmietana M. Double-layer optical fiber interferometer with bio-layer-modified reflector for label-free biosensing of inflammatory proteins. Sci Rep 2024; 14:23127. [PMID: 39367065 PMCID: PMC11452487 DOI: 10.1038/s41598-024-70058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/12/2024] [Indexed: 10/06/2024] Open
Abstract
This work discusses label-free biosensing application of a double-layer optical fiber interferometer where the second layer tailors the reflection conditions at the external plain and supports changes in reflected optical spectrum when a bio-layer binds to it. The double-layer nanostructure consists of precisely tailored thin films, i.e., titanium (TiO2) and hafnium oxides (HfO2) deposited on single-mode fiber end-face by magnetron sputtering. It has been shown numerically and experimentally that the approach besides well spectrally defined interference pattern distinguishes refractive index (RI) changes taking place in a volume and on the sensor surface. These are of interest when label-free biosensing applications are considered. The case of myeloperoxidase (MPO) detection-a protein, which concentration rises during inflammation-is reported as an example of application. The response of the sensor to MPO in a concentration range of 1 × 10-11-5 × 10-6 g/mL was tested. An increase in the MPO concentration was followed by a redshift of the interference pattern and a decrease in reflected power. The negative control performed using ferritin proved specificity of the sensor. The results reported in this work indicate capability of the approach for diagnostic label-free biosensing, possibly also at in vivo conditions.
Collapse
Affiliation(s)
- Dariusz Burnat
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Monika Janik
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Norbert Kwietniewski
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Agnieszka Martychowiec
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
| | - Paulina Musolf
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Krzysztof Bartnik
- Second Department of Radiology, Medical University of Warsaw, Banacha 1a, 02-097, Warsaw, Poland
| | - Marcin Koba
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland
- National Institute of Telecommunications, Szachowa 1, 04-894, Warsaw, Poland
| | - Tomasz P Rygiel
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Joanna Niedziółka-Jönsson
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mateusz Śmietana
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662, Warsaw, Poland.
- Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668, Warsaw, Poland.
| |
Collapse
|
2
|
Huang MR, Chen YF, Gautam B, Hsu YS, Ho JH, Hsu HH, Chen JT. Hollow Hafnium Oxide (HfO 2) Fibers: Using an Effective Combination of Sol-Gel, Electrospinning, and Thermal Degradation Pathway. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4732-4738. [PMID: 38374656 PMCID: PMC10919084 DOI: 10.1021/acs.langmuir.3c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/03/2024] [Accepted: 02/03/2024] [Indexed: 02/21/2024]
Abstract
In recent years, hafnium oxide (HfO2) has gained increasing interest because of its high dielectric constant, excellent thermal stability, and high band gap. Although HfO2 bulk and film materials have been prepared and well-studied, HfO2 fibers, especially hollow fibers, have been less investigated. In this study, we present a facile preparation method for HfO2 hollow fibers through a unique integration of the sol-gel process and electrospinning technique. Initially, polystyrene (PS) fibers are fabricated by using electrospinning, followed by dipping in a HfO2 precursor solution, resulting in HfO2-coated PS fibers. Subsequent thermal treatment at 800 °C ensures the selective pyrolysis of the PS fibers and complete condensation of the HfO2 precursors, forming HfO2 hollow fibers. Scanning electron microscopy (SEM) characterizations reveal HfO2 hollow fibers with rough surfaces and diminished diameters, a transformation attributed to the removal of the PS fibers and the condensation of the HfO2 precursors. Our study also delves into the influence of precursor solution molar ratios, showcasing the ability to achieve smaller HfO2 fiber diameters with reduced precursor quantities. Validation of the material composition is achieved through thermogravimetric analysis (TGA) and energy-dispersive spectroscopy (EDS) mapping. Additionally, X-ray diffraction (XRD) analysis provides insights into the crystallinity of the HfO2 hollow fibers, highlighting a higher crystallinity in fibers annealed at 800 °C compared with those treated at 400 °C. Notably, the HfO2 hollow fibers demonstrate a water contact angle (WCA) of 38.70 ± 5.24°, underscoring the transformation from hydrophobic to hydrophilic properties after the removal of the PS fibers. Looking forward, this work paves the way for extensive research on the surface properties and potential applications of HfO2 hollow fibers in areas such as filtration, energy storage, and memory devices.
Collapse
Affiliation(s)
- Meng-Ru Huang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Yi-Fan Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Bhaskarchand Gautam
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Yen-Shen Hsu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Jhih-Hao Ho
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Hsun-Hao Hsu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
| | - Jiun-Tai Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Taiwan 300093
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Taiwan 300093
| |
Collapse
|
3
|
Siboro P, Sharma AK, Lai PJ, Jayakumar J, Mi FL, Chen HL, Chang Y, Sung HW. Harnessing HfO 2 Nanoparticles for Wearable Tumor Monitoring and Sonodynamic Therapy in Advancing Cancer Care. ACS NANO 2024; 18:2485-2499. [PMID: 38197613 PMCID: PMC10811684 DOI: 10.1021/acsnano.3c11346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Addressing the critical requirement for real-time monitoring of tumor progression in cancer care, this study introduces an innovative wearable platform. This platform employs a thermoplastic polyurethane (TPU) film embedded with hafnium oxide nanoparticles (HfO2 NPs) to facilitate dynamic tracking of tumor growth and regression in real time. Significantly, the synthesized HfO2 NPs exhibit promising characteristics as effective sonosensitizers, holding the potential to efficiently eliminate cancer cells through ultrasound irradiation. The TPU-HfO2 film, acting as a dielectric elastomer (DE) strain sensor, undergoes proportional deformation in response to changes in the tumor volume, thereby influencing its electrical impedance. This distinctive behavior empowers the DE strain sensor to continuously and accurately monitor alterations in tumor volume, determining the optimal timing for initiating HfO2 NP treatment, optimizing dosages, and assessing treatment effectiveness. Seamless integration with a wireless system allows instant transmission of detected electrical impedances to a smartphone for real-time data processing and visualization, enabling immediate patient monitoring and timely intervention by remote medical staff. By combining the dynamic tumor monitoring capabilities of the TPU-HfO2 film with the sonosensitizer potential of HfO2 NPs, this approach propels cancer care into the realm of telemedicine, representing a significant advancement in patient treatment.
Collapse
Affiliation(s)
- Putry
Yosefa Siboro
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Amit Kumar Sharma
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Pei-Jhun Lai
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Jayachandran Jayakumar
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Fwu-Long Mi
- Department
of Biochemistry and Molecular Cell Biology, School of Medicine, College
of Medicine, Taipei Medical University, Taipei 23142, Taiwan (ROC)
| | - Hsin-Lung Chen
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| | - Yen Chang
- Taipei
Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of
Medicine, Tzu Chi University, Hualien 97004, Taiwan (ROC)
| | - Hsing-Wen Sung
- Department
of Chemical Engineering, National Tsing
Hua University, Hsinchu 30013, Taiwan (ROC)
| |
Collapse
|
4
|
Li K, Xie Y, Yang S, Ritasalo R, Mariam J, Yu M, Bi J, Ding H, Lu L. Synergetic Effects of Nanoscale ALD-HfO 2 Coatings and Bionic Microstructures for Antiadhesive Surgical Electrodes: Improved Cutting Performance, Antibacterial Property, and Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43550-43562. [PMID: 37672350 DOI: 10.1021/acsami.3c09374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The high temperature induced by surgical electrodes is highly susceptible to severe surface adhesion and thermal damage to adjacent tissues, which is a major challenge in improving the quality of electrosurgery. Herein, we reported a coupled electrode with micro/nano hierarchical structures fabricated by depositing nanoscale hafnium oxide (HfO2) coatings on bionic microstructures (BMs) via laser texturing, acid washing, and atomic layer deposition (ALD) techniques. The synergistic effect of HfO2 coatings and BMs greatly enhanced the hemophobicity of the electrode with a blood contact angle of 162.15 ± 3.16°. Furthermore, the coupled surface was proven to have excellent antiadhesive properties to blood when heated above 100 °C, and the underlying mechanism was discussed. Further experiments showed that the coupled electrode had significant advantages in reducing cutting forces, thermal damage, and tissue adhesion mass. Moreover, the antibacterial rates against Escherichia coli and Staphylococcus aureus were 97.2% and 97.9%, respectively. In addition, the noncytotoxicity levels of HfO2 coatings were verified by cell apoptosis and cycle assays, indirectly endowing the coupled electrode with biocompatibility. Overall, the coupled electrode was shown to have broad potential for application in the field of electrosurgery, and this work could provide new insights into antiadhesion properties under high-temperature conditions.
Collapse
Affiliation(s)
- Kaikai Li
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yingxi Xie
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shu Yang
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| | | | | | - Min Yu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Junming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Huanwen Ding
- Department of Orthopedics, Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Longsheng Lu
- School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR. Effects of hafnium and boron on antibacterial and mechanical properties of polyvinylpyrrolidone-based nanofibrous composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Staišiūnas L, Kalinauskas P, Juzeliūnas E, Grigucevičienė A, Leinartas K, Niaura G, Stanionytė S, Selskis A. Silicon Passivation by Ultrathin Hafnium Oxide Layer for Photoelectrochemical Applications. Front Chem 2022; 10:859023. [PMID: 35402375 PMCID: PMC8990804 DOI: 10.3389/fchem.2022.859023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Hafnium oxide (HfO2) films on silicon have the potential for application in photovoltaic devices. However, very little is known about the photoelectrochemical and protective properties of HfO2 films on Si. In this study, ultrathin films of HfO2 in the range of 15–70 nm were deposited on p-Si and Au substrates by atomic layer deposition (ALD). Grazing incidence X-ray diffraction (GI-XRD) identified the amorphous structure of the layers. Quartz crystal nanogravimetry (QCN) with Si and Au substrates indicated dynamics of electrolyte intake into the oxide film. No indications of oxide dissolution have been observed in acid (pH 3) and alkaline (pH 12) electrolytes. Mott–Schottky plots showed that the dark Si surface adjacent to the SiHfO2 interface is positively charged in an acid electrolyte and negatively charged in an alkaline electrolyte. The number of photoelectrons was determined to be much greater than the doping level of silicon. The cathodic photoactivity of the p-Si electrode protected by HfO2 films was studied with respect to the reaction of hydrogen reduction in acid and alkaline solutions. In acid solution, the film enhanced the reduction process when compared to that on the coating free electrode. The acceleration effect was explained in terms of prevention of silicon oxide formation, whose passivating capability is higher than that of hafnia films. In an alkaline electrolyte, an inhibition effect of the film was determined. Hafnia films protected Si from corrosion in this medium; however, at the same time, the film reduced electrode activity.
Collapse
|
7
|
Pekarkova J, Gablech I, Fialova T, Bilek O, Fohlerova Z. Modifications of Parylene by Microstructures and Selenium Nanoparticles: Evaluation of Bacterial and Mesenchymal Stem Cell Viability. Front Bioeng Biotechnol 2021; 9:782799. [PMID: 34926427 PMCID: PMC8678570 DOI: 10.3389/fbioe.2021.782799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 12/31/2022] Open
Abstract
Parylene-based implants or coatings introduce surfaces suffering from bacteria colonization. Here, we synthesized polyvinylpyrrolidone-stabilized selenium nanoparticles (SeNPs) as the antibacterial agent, and various approaches are studied for their reproducible adsorption, and thus the modification of parylene-C-coated glass substrate. The nanoparticle deposition process is optimized in the nanoparticle concentration to obtain evenly distributed NPs on the flat parylene-C surface. Moreover, the array of parylene-C micropillars is fabricated by the plasma etching of parylene-C on a silicon wafer, and the surface is modified with SeNPs. All designed surfaces are tested against two bacterial pathogens, Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The results show no antibacterial effect toward S. aureus, while some bacteriostatic effect is observed for E. coli on the flat and microstructured parylene. However, SeNPs did not enhance the antibacterial effect against both bacteria. Additionally, all designed surfaces show cytotoxic effects toward mesenchymal stem cells at high SeNP deposition. These results provide valuable information about the potential antibacterial treatment of widely used parylene-C in biomedicine.
Collapse
Affiliation(s)
- Jana Pekarkova
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno, University of Technology, Brno, Czechia
| | - Imrich Gablech
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno, University of Technology, Brno, Czechia
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Ondrej Bilek
- Institute of Environmental Technology, VŠB—Technical University of Ostrava, Ostrava, Czechia
| | - Zdenka Fohlerova
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno, University of Technology, Brno, Czechia
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
The effect of surface preparation on the protective properties of Al2O3 and HfO2 thin films deposited on cp-titanium by atomic layer deposition. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Manoharan RK, Gangadaran P, Ayyaru S, Ahn BC, Ahn YH. Self-healing functionalization of sulfonated hafnium oxide and copper oxide nanocomposite for effective biocidal control of multidrug-resistant bacteria. NEW J CHEM 2021. [DOI: 10.1039/d1nj00323b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The combination of copper and sulfonated hafnium oxide nanoparticles could be used as an alternative antimicrobial agent to combat multidrug resistant bacteria and membrane biofouling.
Collapse
Affiliation(s)
| | - Prakash Gangadaran
- Department of Nuclear Medicine
- School of Medicine
- Kyungpook National University
- Kyungpook National University Hospital
- Daegu
| | - Sivasankaran Ayyaru
- Department of Civil Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine
- School of Medicine
- Kyungpook National University
- Kyungpook National University Hospital
- Daegu
| | - Young-Ho Ahn
- Department of Civil Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|
10
|
Seweryn A, Alicka M, Fal A, Kornicka-Garbowska K, Lawniczak-Jablonska K, Ozga M, Kuzmiuk P, Godlewski M, Marycz K. Hafnium (IV) oxide obtained by atomic layer deposition (ALD) technology promotes early osteogenesis via activation of Runx2-OPN-mir21A axis while inhibits osteoclasts activity. J Nanobiotechnology 2020; 18:132. [PMID: 32933533 PMCID: PMC7493872 DOI: 10.1186/s12951-020-00692-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Due to increasing aging of population prevalence of age-related disorders including osteoporosis is rapidly growing. Due to health and economic impact of the disease, there is an urgent need to develop techniques supporting bone metabolism and bone regeneration after fracture. Due to imbalance between bone forming and bone resorbing cells, the healing process of osteoporotic bone is problematic and prolonged. Thus searching for agents able to restore the homeostasis between these cells is strongly desirable. RESULTS In the present study, using ALD technology, we obtained homogeneous, amorphous layer of hafnium (IV) oxide (HfO2). Considering the specific growth rate (1.9Å/cycle) for the selected process at the temperature of 90 °C, we performed the 100 nm deposition process, which was confirmed by measuring film thickness using reflectometry. Then biological properties of the layer were investigated with pre-osteoblast (MC3T3), pre-osteoclasts (4B12) and macrophages (RAW 264.7) using immunofluorescence and RT-qPCR. We have shown, that HfO2 (i) enhance osteogenesis, (ii) reduce osteoclastogenesis (iii) do not elicit immune response and (iv) exert anti-inflammatory effects. CONCLUSION HfO2 layer can be applied to cover the surface of metallic biomaterials in order to enhance the healing process of osteoporotic bone fracture.
Collapse
Affiliation(s)
- A Seweryn
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Alicka
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - A Fal
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland
| | - K Kornicka-Garbowska
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland
| | | | - M Ozga
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - P Kuzmiuk
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - M Godlewski
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| | - K Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
- Cardinal Stefan Wyszynski University, Collegium Medicum, 01938, Warsaw, Poland.
- International Institute of Translational Medicine, Jesionowa 11, Malin, Wisznia Mała, 55-114, Wrocław, Poland.
| |
Collapse
|
11
|
Bilek O, Fialova T, Otahal A, Adam V, Smerkova K, Fohlerova Z. Antibacterial activity of AgNPs–TiO 2 nanotubes: influence of different nanoparticle stabilizers. RSC Adv 2020; 10:44601-44610. [PMID: 35517148 PMCID: PMC9058477 DOI: 10.1039/d0ra07305a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Enhanced antibacterial properties of nanomaterials such as TiO2 nanotubes (TNTs) and silver nanoparticles (AgNPs) have attracted much attention in biomedicine and industry. The antibacterial properties of nanoparticles depend, among others, on the functionalization layer of the nanoparticles. However, the more complex information about the influence of different functionalization layers on antibacterial properties of nanoparticle decorated surfaces is still missing. Here we show the array of ∼50 nm diameter TNTs decorated with ∼50 nm AgNPs having different functionalization layers such as polyvinylpyrrolidone, branched polyethyleneimine, citrate, lipoic acid, and polyethylene glycol. To assess the antibacterial properties, the viability of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) has been assessed. Our results showed that the functional layer of nanoparticles plays an important role in antibacterial properties and the synergistic effect such nanoparticles and TiO2 nanotubes have had different effects on adhesion and viability of G− and G+ bacteria. These findings could help researchers to optimally design any surfaces to be used as an antibacterial including the implantable titanium biomaterials. Synergictic antibacterial effect of AgNPs–TiO2 nanotubes is influenced by different nanoparticle stabilizers.![]()
Collapse
Affiliation(s)
- Ondrej Bilek
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- Brno
- Czech Republic
| | - Alexandr Otahal
- Department of Microelectronics
- Brno University of Technology
- Brno
- Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Kristyna Smerkova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Zdenka Fohlerova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Microelectronics
| |
Collapse
|