1
|
Xue H, Cai G, Mao Y, Chen B, Ullah A, Chen G. Photothermally Responsive siRNA Delivery by PEGylated Poly(amido amine)s for Improved Tumor Therapy. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycations have a high siRNA binding efficiency, however, their cytotoxicity and poor transfection efficiency prevent their use in siRNA delivery. This study combined PEGylation for enhanced safety with a photothermally controlled endolysosomal escape to improve the cytoplasmic delivery
of polycations.We first synthesized PEGylated cationic polymers (denoted as PEG-PHD), which were then used to prepare polyplexes with siRNA and ICG through electrostatic interactions. We found that the cytotoxicity of PEG-PHD and its polyplexes were significantly decreased compared with unPEGylated
PHD. The prepared polyplexes successfully induced endolysosomal escape under laser irradiation, thereby showing better siRNA delivery efficiency in vitro and in vivo. Finally, polyplexes carrying siBcl-2 achieved significant inhibition of 4T1 tumor mediated by specific gene silencing
after intravenous injection. In conclusion, this biocompatible photothermal controlled delivery platform is suitable for improving the efficiency of siRNA transfection. Overall, this study suggests that combing PEGylation and photoresponsive delivery is a promising strategy for designing siRNA
delivery carriers.
Collapse
Affiliation(s)
- Hao Xue
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China
| | - Guoqiang Cai
- NICE Zhejiang Technology Co. Ltd., Hangzhou 310051, PR China
| | - Yongqing Mao
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China
| | - Bin Chen
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing 210042, PR China
| | - Aftab Ullah
- College of Pharmaceutical Science, Jiangsu University, Zhenjiang 212013, PR China
| | - Gang Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, PR China
| |
Collapse
|
2
|
Zhang R, Nie T, Fang Y, Huang H, Wu J. Poly(disulfide)s: From Synthesis to Drug Delivery. Biomacromolecules 2021; 23:1-19. [PMID: 34874705 DOI: 10.1021/acs.biomac.1c01210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioresponsive polymers have been widely used in drug delivery because of their degradability. For example, poly(disulfide)s with repeating disulfide bonds in the main chain have attracted considerable research attention. The characteristics of the disulfide bonds, including their dynamic and reversible properties and their responsiveness to stimuli such as reductants, light, heat, and mechanical force, make them ideal platforms for on-demand drug delivery. This review introduces the synthesis methods and applications of poly(disulfide)s. Furthermore, the synthesis methods of poly(disulfide)s are classified on the basis of the monomers used: oxidative step-growth polymerization with dithiols, ring-opening polymerization with cyclic disulfides, and polymerization with linear disulfides. In addition, recent advances in poly(disulfide)s for the delivery of small-molecule or biomacromolecular drugs are discussed. Quantum-dot-loaded poly(disulfide) delivery systems for imaging are also included. This review provides an overview of the various design strategies employed in the construction of poly(disulfide) platforms to inspire new applications in the field of drug delivery.
Collapse
Affiliation(s)
- Ruhe Zhang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Tianqi Nie
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yifen Fang
- Department of Cardiology, The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510180, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Stimuli-responsive nanoliposomes as prospective nanocarriers for targeted drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102916] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Delivery of pOXR1 through an injectable liposomal nanoparticle enhances spinal cord injury regeneration by alleviating oxidative stress. Bioact Mater 2021; 6:3177-3191. [PMID: 33778197 PMCID: PMC7970014 DOI: 10.1016/j.bioactmat.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidation resistance 1 (OXR1) is regarded as a critical regulator of cellular homeostasis in response to oxidative stress. However, the role of OXR1 in the neuronal response to spinal cord injury (SCI) remains undefined. On the other hand, gene therapy for SCI has shown limited success to date due in part to the poor utility of conventional gene vectors. In this study, we evaluated the function of OXR1 in SCI and developed an available carrier for delivering the OXR1 plasmid (pOXR1). We found that OXR1 expression is remarkably increased after SCI and that this regulation is protective after SCI. Meanwhile, we assembled cationic nanoparticles with vitamin E succinate-grafted ε-polylysine (VES-g-PLL) (Nps). The pOXR1 was precompressed with Nps and then encapsulated into cationic liposomes. The particle size of pOXR1 was compressed to 58 nm, which suggests that pOXR1 can be encapsulated inside liposomes with high encapsulation efficiency and stability to enhance the transfection efficiency. The agarose gel results indicated that Nps-pOXR1-Lip eliminated the degradation of DNA by DNase I and maintained its activity, and the cytotoxicity results indicated that pOXR1 was successfully transported into cells and exhibited lower cytotoxicity. Finally, Nps-pOXR1-Lip promoted functional recovery by alleviating neuronal apoptosis, attenuating oxidative stress and inhibiting inflammation. Therefore, our study provides considerable evidence that OXR1 is a beneficial factor in resistance to SCI and that Nps-Lip-pOXR1 exerts therapeutic effects in acute traumatic SCI. OXR1 is upregulated after SCI and may provide a protective effect in response to neural injury. OXR1 plasmid is condensed by VES-g-PLL micelles and then encapsulated into cationic liposomes. Liposome complexes significantly enhance the OXR1 protein expression in vivo and in vitro. Overexpressed OXR1 relieving oxidative stress after SCI through Nrf-2/HO-1 pathway.
Collapse
|
7
|
Progress of cationic gene delivery reagents for non-viral vector. Appl Microbiol Biotechnol 2021; 105:525-538. [PMID: 33394152 DOI: 10.1007/s00253-020-11028-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022]
Abstract
Gene delivery systems play a vital role in gene therapy and recombinant protein production. The advantages of using gene delivery reagents for non-viral vector include the capacity to accommodate a large packaging load and their low or absent immunogenicity. Furthermore, they are easy to produce at a large scale and preserve. Gene delivery reagents for non-viral vector are commonly used for transfecting a variety of cells and tissues. It is mainly composed of liposomes and non-liposome cationic polymers. According to the different head structures used, the non-viral cationic transfection reagents include a quaternary ammonium salt, amine, amino acid or polypeptide, guanidine salt, and a heterocyclic ring. This article summarizes these approaches and developments of types and components of transfection reagents and optimization of gene delivery. The optimization of mammalian cell transient recombinant protein expression system and cationic reagents for clinical or clinical trials are also discussed.
Collapse
|
8
|
Zhao Y, Zheng H, Wang X, Zheng X, Zheng Y, Chen Y, Fei W, Zhu J, Wang W, Zheng C. Preparation and Biological Property Evaluation of Novel Cationic Lipid-Based Liposomes for Efficient Gene Delivery. AAPS PharmSciTech 2021; 22:22. [PMID: 33389222 DOI: 10.1208/s12249-020-01868-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Novel cationic lipid-based liposomes prepared using an amphiphilic cationic lipid material, N,N-dimethyl-(N',N'-di-stearoyl-1-ethyl)1,3-diaminopropane (DMSP), have been proposed to enhance the transfection of nucleic acids. Herein, we designed and investigated liposomes prepared using DMSP, soybean phosphatidylcholine, and cholesterol. This novel gene vector has high gene loading capabilities and excellent protection against nuclease degradation. An in vitro study showed that the liposomes had lower toxicity and superior cellular uptake and transfection efficiency compared with Lipofectamine 2000. An endosomal escape study revealed that the liposomes demonstrated high endosomal escape and released their genetic payload in the cytoplasm efficiently. Mechanistic studies indicated that the liposome/nucleic acid complexes entered cells through energy-dependent endocytosis that was mediated by fossa proteins. These results suggest that such cationic lipid-based liposome vectors have potential for clinical gene delivery.
Collapse
|
9
|
Jiang YY, Yuan FL, Li JW, Wu HE, Wei MY, Shao CL, Liu M, Wang GH. Targeting Delivery Nanocarriers for (+)-Terrein to Enhance Its Anticancer Effects. ACS OMEGA 2020; 5:28889-28896. [PMID: 33195942 PMCID: PMC7659136 DOI: 10.1021/acsomega.0c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
As a compound from marine fungi, (+)-terrein showed significant anticancer activity. In this study, (+)-terrein was extracted from the marine-derived fungus and showed significant cytotoxicity against cancer cells, especially in A549 cells. To enhance its anticancer effects, redox-responsive nanocarriers based on folic acid-chitosan decorating the mesoporous silica nanoparticles were designed to control (+)-terrein target delivery into cancer cells. (+)-Terrein was loaded in the holes, and folic acid-chitosan worked as a gatekeeper by disulfide linkage controlling (+)-terrein release in the tumor microenvironment. The (+)-terrein drug delivery systems exhibited cytotoxicity toward A549 cells through induction of apoptosis. The apoptosis effect was confirmed by the increase in the expression of cleaved caspase-3, caspase-9, and PARP. Taken together, this work evaluates for the first time the (+)-terrein delivery system and provides a promising nanomedicine platform for (+)-terrein.
Collapse
Affiliation(s)
- Yao-Yao Jiang
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Feng-Li Yuan
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Jin-Wen Li
- School
of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hong-E Wu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Mei-Yan Wei
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
| | - Chang-Lun Shao
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts of Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, China
| | - Ming Liu
- School
of Medicine and Pharmacy, Ocean University
of China, Qingdao 266003, China
- Laboratory
for Marine Drugs and Bioproducts of Qingdao National Laboratory for
Marine Science and Technology, Qingdao 266237, China
| | - Guan-Hai Wang
- School
of Pharmacy, Guangdong Medical University, Dongguan 523808, China
- State
Key Laboratory for Chemistry and Molecular Engineering of Medicinal
Resources, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
10
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
11
|
Shetty C, Noronha A, Pontarelli A, Wilds CJ, Oh JK. Dual-Location Dual-Acid/Glutathione-Degradable Cationic Micelleplexes through Hydrophobic Modification for Enhanced Gene Silencing. Mol Pharm 2020; 17:3979-3989. [DOI: 10.1021/acs.molpharmaceut.0c00767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Anne Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
12
|
Muhammad K, Zhou J, Ullah I, Zhao J, Muhammad A, Xia S, Zhang W, Feng Y. Bioreducible cationic random copolymer for gene delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jiaying Zhou
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ihsan Ullah
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jing Zhao
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ayaz Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine Affiliated Hospital LogisticsUniversity of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Chemical EngineeringCollaborative Innovation Center of Chemical Science Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|
13
|
Lu M, Xing H, Cheng L, Liu H, Lang L, Yang T, Zhao X, Xu H, Ding P. A dual-functional buformin-mimicking poly(amido amine) for efficient and safe gene delivery. J Drug Target 2020; 28:923-932. [PMID: 32312081 DOI: 10.1080/1061186x.2020.1729770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Biguanides (i.e. metformin, phenformin and buformin) are antidiabetic drugs with potential antitumor effects. Herein, a polycationic polymer, N,N'-bis(cystamine)acrylamide-buformin (CBA-Bu), containing multiple biodegradable disulphide bonds and buformin-mimicking side chains was synthesised. CBA-Bu was equipped with high efficiency and safety profile for gene delivery, meanwhile exhibiting potential antitumor efficacy. As a gene vector, CBA-Bu was able to condense plasmid DNA (pDNA) into nano-sized (<200 nm), positively-charged (>30 mV) uniform polyplexes that were well resistant to heparin and DNase I. Due to the reduction responsiveness of the disulphide bonds, CBA-Bu/pDNA polyplexes could release the loaded pDNA in the presence of dithiothreitol, and induce extremely low cytotoxicity in NIH/3T3 and U87 MG cells. The transfection results showed that CBA-Bu had a cellular uptake efficiency comparable to 25 kDa PEI, while a significantly higher gene expression level. Additionally, CBA-Bu had a lower IC50 value than its non-biguanide counterpart in two cancer cell lines. Furthermore, CBA-Bu could activate AMPK and inhibit mTOR pathways in U87 MG cells, a mechanism involved in the antitumor effect of biguanides. Taken together, CBA-Bu represented an advanced gene vector combining desirable gene delivery capability with potential antitumor activity, which was promising to achieve enhanced therapeutic efficacy in antitumor gene therapy.
Collapse
Affiliation(s)
- Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Cheng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Lang Lang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, Maine, USA
| | - Xiaoyun Zhao
- School of life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
14
|
Gao B, Wang X, Wang M, Ren XK, Guo J, Xia S, Zhang W, Feng Y. From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization in vivo. Biomater Sci 2020; 8:2318-2328. [DOI: 10.1039/c9bm02000d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A dual-gene delivery system with coordinated expression function boosted the neovascularization.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Meiyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|