1
|
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
During the orthodontic process, increased microbial colonization and dental plaque formation on the orthodontic appliances and auxiliaries are major complications, causing oral infectious diseases, such as dental caries and periodontal diseases. To reduce plaque accumulation, antimicrobial materials are increasingly being investigated and applied to orthodontic appliances and auxiliaries by various methods. Through the development of nanotechnology, nanoparticles (NPs) have been reported to exhibit excellent antibacterial properties and have been applied in orthodontic materials to decrease dental plaque accumulation. In this review, we present the current development, antibacterial mechanisms, biocompatibility, and application of antibacterial NPs in orthodontic materials.
Collapse
Affiliation(s)
- Zhang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| | - Du Qin
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Fei Wei
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Li Xiaobing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
2
|
Qiang WP, He XD, Zhang K, Cheng YF, Lu ZS, Li CM, Kang ET, Xia QY, Xu LQ. Mussel Adhesive Mimetic Silk Sericin Prepared by Enzymatic Oxidation for the Construction of Antibacterial Coatings. ACS Biomater Sci Eng 2021; 7:3379-3388. [PMID: 34161086 DOI: 10.1021/acsbiomaterials.1c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the rapid development and advancement in orthodontic and orthopedic technologies, the demand for biomedical-grade titanium (Ti) alloys is growing. The Ti-based implants are susceptible to bacterial infections, leading to poor healing and osteointegration, resulting in implant failure or repeated surgical intervention. Silk sericin (SS) is hydrophilic, biocompatible, and biodegradable and could induce a low immunological response in vivo. As a result, it would be intriguing to investigate the use of hydrophilic SS in surface modification. In this work, the tyrosine moiety in SS was oxidized by tyrosinase (or polyphenol oxidase) to the 3,4-dihydroxyphenylalanine (DOPA) form, generating the catechol moiety-containing SS (SSC). Inspired by the adhesion of mussel foot proteins, the SSC coatings could be directly deposited onto multiple surfaces in SS and tyrosinase mixed stock solutions to create active surfaces with catechol groups. Further, the SSC-coated Ti surfaces were hybridized with silver nanoparticles (Ag NPs) via in situ silver ion (Ag+) reduction. The antibacterial properties of the Ag NPs/SS-coated Ti surfaces are demonstrated, and they can prevent bacterial cell adhesion as well as early-stage biofilm formation. In addition, the developed Ag NPs/SSC-coated Ti surfaces exhibited a negligible level of cytotoxicity in L929 mouse fibroblast cells.
Collapse
Affiliation(s)
- Wei Peng Qiang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xiao Dong He
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Kai Zhang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Yan Fang Cheng
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi Song Lu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - Chang Ming Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| | - En Tang Kang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, 117576 Singapore
| | - Qing You Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, P. R. China
| | - Li Qun Xu
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Liu W, Liang L, Liu B, Zhao D, Tian Y, Huang Q, Wu H. The response of macrophages and their osteogenic potential modulated by micro/nano-structured Ti surfaces. Colloids Surf B Biointerfaces 2021; 205:111848. [PMID: 34022707 DOI: 10.1016/j.colsurfb.2021.111848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023]
Abstract
Current understanding on the interactions between micro/nano-structured Ti surfaces and macrophages is still limited. In this work, TiO2 nano-structures were introduced onto acid-etched Ti surfaces by alkali-heat treatment, ion exchange and subsequent heat treatment. By adjusting the concentration of NaOH during alkali-heat treatment, nano-flakes, nano-flakes mixed with nano-wires or nano-wires could formed on acid-etched Ti surfaces. The micro- and micro/nano-structured Ti surfaces possessed similar surface chemical and phase compositions. In vitro results indicate that the morphology of macrophages was highly dependent on the morphological features of nano-structures. Nano-flakes and nano-wires were favorable to induce the formation of lamellipodia and filopodia, respectively. Compared to micro-structured Ti surface, micro/nano-structured Ti surfaces polarized macrophages to their M2 phenotype and enhanced the gene expressions of osteogenic growth factors in macrophages. The M2 polarized macrophages promoted the maturation of osteoblasts. Compared to that with nano-flakes or nano-wires, the surface with mixed features of nano-flakes and nano-wires exhibited stronger anti-inflammatory and osteo-immunomodulatory effects. The findings presented in the current work suggest that introducing micro/nano-topographies onto Ti-based implant surfaces is a promising strategy to modulate the inflammatory response and mediate osteogenesis.
Collapse
Affiliation(s)
- Wentao Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Luxin Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
| | - Dapeng Zhao
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Yingtao Tian
- Engineering Department, Lancaster University, Lancaster, UK
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China; Foshan (Southern China) Institute for New Materials, Foshan, 528200, PR China.
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
5
|
Influence of silver speciation on the inflammatory regulation of AgNPs anchoring onto titania nanotubes. Colloids Surf B Biointerfaces 2020; 194:111199. [PMID: 32585536 DOI: 10.1016/j.colsurfb.2020.111199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 01/14/2023]
Abstract
AgNPs were immobilized on titania nanotubes (TNT) by chelation of polydopamine (PD) to generate a TNT/PD/AgNPs (TPAS) via a simple dipping method. The inflammatory regulation of the TPAS coating were investigated. To gain a deep insight into the transformation of AgNPs in macrophages, a cation exchange reaction was introduced for speciation analysis of AgNPs and Ag+ by inductively coupled plasma-mass spectrometry. Owing to the magic signal amplification strategy, the trace AgNPs and Ag+ in release media and even in macrophages were easily detected. In simulated inflammatory microenvironment, M1 macrophages promoted the cell-responsive release of Ag+ from TPAS at 3 d, which dampened inflammation. Then, macrophages reduced Ag+ by intracellular metabolites, leading to the formation of new AgNPs in cells. This study give a new sight for discovering the inflammatory regulation mechanism of silver containing biomaterials.
Collapse
|
6
|
Sharma D, Ledwani L, Kumar N, Mehrotra T, Pervaiz N, Kumar R. An Investigation of Physicochemical and Biological Properties of Rheum emodi-Mediated Bimetallic Ag–Cu Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04641-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Hydrophilic Silver Nanoparticles Loaded into Niosomes: Physical-Chemical Characterization in View of Biological Applications. NANOMATERIALS 2019; 9:nano9081177. [PMID: 31426465 PMCID: PMC6724070 DOI: 10.3390/nano9081177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used as antibacterial agents and anticancer drugs, but often their low stability limits their mass production and broad applications. The use of niosomes as a carrier to protect and envelop AgNPs gives a new perspective to solve these problems. In this study, AgNPs were functionalized with sodium 3-mercapto-1-propanesulfonate (3MPS) to induce hydrophilic behavior, improving loading in Tween 20 and Span 20 niosomes (NioTw20 and NioSp20, respectively). Entrapment efficiency was evaluated by UV analyses and is around 1–4%. Dimensions were investigated by means of dynamic light scattering (DLS) (<2RH> = 140 ± 4 nm and <2RH> = 251 ± 1 nm respectively for NioTw20 + AgNPs and NioSp20 + AgNPs) and were compared with those by atomic force microscopy (AFM) and small angle X ray scattering (SAXS) analyses. Stability was assessed in water up to 90 days, and both in bovine serum and human serum for up to 8 h. In order to characterize the local structure of niosomes, SAXS measurements have been performed on Tween 20 and Span 20 empty niosomes and loaded with AgNPs. The release profiles of hydrophilic probe calcein and lipophilic probe Nile Red were performed in HEPES buffer and in human serum. All these features contribute to conclude that the two systems, NioTw20 + AgNPs and NioSp20 + AgNPs, are suitable and promising in the field of biological applications.
Collapse
|
8
|
Wang Z, Huang X, Jin S, Wang H, Yuan L, Brash JL. Rapid antibacterial effect of sunlight-exposed silicon nanowire arrays modified with Au/Ag alloy nanoparticles. J Mater Chem B 2019; 7:6202-6209. [DOI: 10.1039/c9tb01472a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Au/Ag alloy nanoparticles modified silicon nanowire arrays can kill bacterial cells in several minutes under sunlight due to their photothermal and photocatalytic activities.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiuzhen Huang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Sheng Jin
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Hongwei Wang
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lin Yuan
- Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - John L. Brash
- School of Biomedical Engineering
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| |
Collapse
|