1
|
Wang S, Wu W, Lv J, Qi Q, Huang W. Fast detection of sodium dithionite in sugar using a xanthylium-based fluorescent probe. Food Chem 2024; 452:139547. [PMID: 38728893 DOI: 10.1016/j.foodchem.2024.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Dithionite remained in the foodstuff may pose a great threat to the health of consumers. Three xanthylium-based probes were synthesized and their responses to dithionite were explored. Probe SH-1 could respond to dithionite selectively in PBS buffer (15% DMSO, 10 mM, pH = 7.4). Upon the addition of dithionite, the fluorescent emission of SH-1 at 684 nm dropped quickly (within 10 s) and the fluorescence decline was proportional to the concentration of dithionite (0-7.0 μM). The limit of detection was determined to be 0.139 μM. Then, the sensing mechanism was tentatively presented and the structure of resulted adduct (SH-1-SO3-) which was the reaction product of SH-1 and dithionite via a Micheal addition reaction followed by an oxidation reaction was verified. Moreover, white granulated sugar was subjected to the standard spike experiments and the results demonstrated a great potential of SH-1 for the quantitative monitoring of dithionite in foodstuffs.
Collapse
Affiliation(s)
- Sifan Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weijie Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaqi Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qingrong Qi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Wencai Huang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Tian Q, Lu X, He W. Structure-regulated mitochondrial-targeted fluorescent probe for sensing and imaging SO 2in vivo. Bioorg Chem 2023; 138:106656. [PMID: 37329811 DOI: 10.1016/j.bioorg.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
SO2 and its derivatives play an important role in the antioxidation and anticorrosion of food and medicine. In biological systems, abnormal levels of SO2 lead to the occurrence of many biological diseases. Hence, the development of suitable tools for monitoring SO2 in mitochondria is beneficial for studying the biological effect of SO2 in subcellular organelles. In this research, DHX-1 and DHX-2 are fluorescent probes designed on the basis of dihydroxanthene skeletons. Importantly, DHX-1 (650 nm) and DHX-2 (748 nm) show near-infrared fluorescence response toward endogenous and exogenous SO2, which showed advantages of great selectivity, good sensitivity and low cytotoxicity, and the detection limit is 5.6 μM and 4.08 μM of SO2, respectively. Moreover, DHX-1 and DHX-2 realized SO2 sensing in HeLa cells and zebrafish. Moreover, cell imaging demonstrated that DHX-2 with a thiazole salt structure possesses good mitochondria-targeting ability. Additionally, DHX-2 was perfectly achieved by in situ imaging of SO2 in mice.
Collapse
Affiliation(s)
- Qinqin Tian
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Xianlin Lu
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
3
|
Li H, Li J, Pan Z, Zheng T, Song Y, Zhang J, Xiao Z. Highly selective and sensitive detection of Hg 2+ by a novel fluorescent probe with dual recognition sites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122379. [PMID: 36682255 DOI: 10.1016/j.saa.2023.122379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
A novel thionocarbonate-coumarin-thiourea triad-based probe with dual recognition sites for sensing mercury (Hg2+) ion was developed. The synthesized probe possessed both fluorogenic ("off-on") and chromogenic (from colorless to blackish brown) sensing performance towards Hg2+ ions. The fluorescence intensity was increased by 70 fold after the addition of Hg2+. As expected, the probe exhibited excellent selectivity and sensitivity for Hg2+ compared to other common competitive metal ions. The fluorescence intensity of the probe improved linearly with the increase of the concentration of Hg2+ (0-40 μM). Also, the minimum limit of detection (LOD) of the synthesized probe was 0.12 μM. Considering the importance of test feasibility in the harsh environment, the developed probe was applicable for detecting Hg2+ ions over a broad working pH range of 3-11. It is reliable and qualifies for the quantitative determination of Hg2+ concentrations in actual water samples. Finally, the probe achieved the bioimaging performance of Hg2+ in living cells and plants with good biocompatibility.
Collapse
Affiliation(s)
- Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China.
| | - Jiayin Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhixiu Pan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Jian Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| | - Zhongwen Xiao
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, PR China
| |
Collapse
|
4
|
Du Y, Pan C, Cao C. A mitochondria-targetable fluorescent probe for sulfur dioxide detection and visualisation in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122275. [PMID: 36580753 DOI: 10.1016/j.saa.2022.122275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Sulfur dioxide (SO2) is a one of reactive sulfur species (RSS) that plays significant roles in many physiological processes. While abnormal levels of SO2 in mitochondria have been related to various diseases. Hence, developing suitable fluorescent probe for monitoring SO2 is significant in living organisms. In this research, we designed and synthesized a mitochondrial-target probe Mito-NPH featuring the graft of a strong electron-withdrawing 4-pyridiniumylacrylonitrile unit to an electron-donating naphthalenic unit that intramolecular charge transfer (ICT) process happened. The probe Mito-NPH underwent a nucleophilic addition of HSO3-/SO32-to give fluorescent emission signal change from red to blue and exhibited specific response toward HSO3-/SO32-over other analytes. Moreover, Mito-NPH showed ultrafast response rate (within 10 s) for HSO3-. Importantly, cell imaging results demonstrated that the probe can sense endogenous SO2 in mitochondria.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Caixia Pan
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Chunjuan Cao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
5
|
Zhang C, Wu J, Liu W, Zhang W, Lee CS, Wang P. NIR-II xanthene dyes with structure-inherent bacterial targeting for efficient photothermal and broad-spectrum antibacterial therapy. Acta Biomater 2023; 159:247-258. [PMID: 36724864 DOI: 10.1016/j.actbio.2023.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
Development of novel broad-spectrum sterilization is an efficient strategy that can overcome drug resistance and avoid antibiotics abuse toward bacterial-infected diseases. Photothermal therapy (PTT) in the second near-infrared (NIR-II) therapeutic window with an increased tissue penetration and elevated maximal permissible exposure has attracted considerable attention in antibacterial applications. However, the lack of bacterial-targeted photothermal agents limits their further development. Herein, we developed three xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm. Their bulky planar conformations facilitated the formation of H-aggregates with outstanding photothermal conversion ability and good photostability in the NIR-II therapeutic bio window. By manipulating side chains of CNs, their liposomes exhibited different surface charges, ranging from negative to positive. Remarkably, the intermolecular hydrogen bonding of CN3 dimer drived the positively charged xanthene skeleton exposed to the periphery, which endowed it natural bacterial targeting potency. Therefore, CN3 possessed a good NIR-II photothermal and broad-spectrum sterilization against Gram-positive and Gram-negative bacteria. The photothermal antibacterial activities for S. aureus and E. coli were 99.4% and 99.2%, respectively, promoting significant wound healing in bacteria-infected mice with superior biocompatibility. This structure-inherent bacterial targeting strategy as a proof-of-concept shows an efficient broad-spectrum bacterial inactivation, indicating more encouraging NIR-II photothermal antibacterial therapy. STATEMENT OF SIGNIFICANCE: Photothermal therapy (PTT) in the second near-infrared region (NIR-II, 1000-1700 nm) enables the treatment of deep inflammation more satisfactory due to higher tissue penetration depth. In this work, three new NIR-II xanthene derivatives (CNs) with intense light harvesting ability around 1180 nm were developed. CNs showed typical H-aggregated performance with bulky planar conformations and outstanding photothermal conversion ability. Density functional theory calculations revealed that the intermolecular hydrogen bonding of CN3 dimer drived the exposure of positively charged xanthene skeleton to periphery of dimer. Therefore, CN3 NPs possessed natural bacterial targeting potency and excellent NIR-II photothermal and broad-spectrum sterilization, and so as to significantly promote the wound healing of Gram-positive / negative bacteria infected mice.
Collapse
Affiliation(s)
- Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Qingdao Casfuture Research Institute CO., LTD, PR China.
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, PR China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Liu X, Guo H, Wang J, Huang Q, Chen X, Bao J, Yu J. A first-principles study of the adsorption mechanism of NO 2 on monolayer antimonide phosphide: a highly sensitive and selective gas sensor. NEW J CHEM 2023. [DOI: 10.1039/d2nj05553h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A NO2/SbP adsorption system with high adsorption energy (−0.876 eV) and charge transfer value (−0.83 e) is reported.
Collapse
Affiliation(s)
- Xiaodong Liu
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haojie Guo
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jia Wang
- College of Architectural Engineering, Shanxi Institute of Applied Science and Technology, Taiyuan 030031, China
| | - Qing Huang
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| | - Jiading Bao
- Faculty of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, Chongqing University and College of Optoelectronic Engineering, Chongqing University, 400044 Chongqing, China
| |
Collapse
|
7
|
Surfactant-induced excimer emission: A versatile platform for the design of fluorogenic probes. Biomaterials 2022; 289:121749. [DOI: 10.1016/j.biomaterials.2022.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
|
8
|
Gao G, Wang J, Wang X, Liu G, Fan L, Ru G, Wang S, Song M, Shen W, Zheng X, Han L, Liu L. Reversible Near-Infrared Fluorescent Probe for Rapid Sensing Sulfur Dioxide and Formaldehyde: Recognition and Photoactivation Mechanism and Applications in Bioimaging and Encryption Ink. Anal Chem 2022; 94:13590-13597. [PMID: 36134508 DOI: 10.1021/acs.analchem.2c03335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel near-infrared (NIR) fluorescent Probe 1 was successfully developed for the reversible detection of sulfur dioxide derivatives and formaldehyde. The purple solution of Probe 1 faded to colorless in 1.8 s with the addition of HSO3-. Meanwhile, its fluorescence signal disappeared instantaneously with a 39 nM detection limit. The probe exhibited excellent selectivity toward HSO3- over other potential interfering agents. Then, its absorption and fluorescence bands were able to effectively recover in response to formaldehyde. Remarkably, this reverse process was able to accelerate 84 times under UV light in 122 s and achieved a recovery rate of 98% by UV light, the photoactivation mechanism was fully determined by HRMS and theoretical calculation. Furthermore, we demonstrated that Probe 1 was successfully applied for the detection of sulfur dioxide derivatives and formaldehyde in living cells and data encryption.
Collapse
Affiliation(s)
- Guangqin Gao
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Jinjin Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Xingxiao Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Guoxing Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Liangxin Fan
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Guangxin Ru
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Shun Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Meirong Song
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Wenbo Shen
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Xin Zheng
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| |
Collapse
|
9
|
Yang L, Yang N, Gu P, Zhang Y, Gong X, Zhang S, Li J, Ji L, He G. A novel naphthalimide-based fluorescent probe for the colorimetric and ratiometric detection of SO2 derivatives in biological imaging. Bioorg Chem 2022; 123:105801. [DOI: 10.1016/j.bioorg.2022.105801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
10
|
Wu Y, Yin C, Zhang W, Zhang Y, Huo F. Mitochondrial-Targeting Near-Infrared Fluorescent Probe for Visualizing Viscosity in Drug-Induced Cells and a Fatty Liver Mouse Model. Anal Chem 2022; 94:5069-5074. [PMID: 35286070 DOI: 10.1021/acs.analchem.1c05288] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria, as "cell energy stations", are involved in the regulation of various cell functions. Recent investigations revealed that mitochondrial dysfunction that can cause an intracellular viscosity mutation, a process that is associated with an increasing number of diseases that are not curable or manageable. However, conventional viscometers cannot be used to monitor the viscosity changes in living cells and in vivo. In order to cater to the complex biological environment, we present a chemical toolbox, MI-BP-CC, that employs N,N-diethyl and double bonds as sensitive sites for viscosity based on the TICT mechanism (twisted intramolecular charge transfer) to monitor the viscosity of living cells and fatter liver mice. MI-BP-CC features good mitochondrial targeting and a near-infrared emission. Surprisingly, in the presence of viscosity, the MI-BP-CC probe exhibited an ultrasensitive model for viscosity detection showing a red fluorescence signal from a silent "off" state to "on". More importantly, utilizing the satisfactory detection performance of MI-BP-CC, we have successfully visualized increased viscosity under the pathological models of Parkinson's (PD) and fatty liver mice. We anticipate that these findings will provide a convenient and efficient tool to understand physiological functions of viscosity in more biosystems.
Collapse
Affiliation(s)
- Yingchun Wu
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.,School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Weijie Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yongbin Zhang
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
11
|
Wang L, Zheng K, Yu W, Yan J, Zhang N. A novel benzothiazole-based fluorescent probe for detection of SO2 derivatives and cysteine in aqueous solution and serum. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Bao X, Cao X, Yuan Y, Zhou B, Huo C. Ultrafast Detection of Sulfur Dioxide Derivatives by a Distinctive "Dual-Positive-Ion" Platform that Features a Doubly Activated but Irreversible Michael Addition Site. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4903-4910. [PMID: 33861597 DOI: 10.1021/acs.jafc.1c00797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfur dioxide (SO2) is a gaseous signaling molecule and widely used as a preservative for foods, but its excessive intake is closely related to a series of diseases. Therefore, the development of a potent fluorescence probe for the detection of SO2 in foods and biological systems is of great significance. Herein, we report for the first time a "dual-positive-ion" platform-based fluorescence probe CMQ, designed by a doubly activated but irreversible strategy, which results in its ultrafast response to SO2 within 5 s in pure aqueous solution together with a low detection limit as 15.6 nM. In addition, the probe was successfully applied for imaging of SO2 in mitochondria of living cells and zebrafish and prepared as a reagent kit for convenient and instantaneous quantification of HSO3- in real food samples.
Collapse
Affiliation(s)
- Xiazhen Bao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xuehui Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Congde Huo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
13
|
Li F, Zou L, Xu J, Liu F, Zhang X, Li H, Zhang G, Duan X. A high-performance colorimetric fluorescence sensor based on Michael addition reaction to detect HSO3− in real samples. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Han J, Yang S, Wang B, Song X. Tackling the Selectivity Dilemma of Benzopyrylium-Coumarin Dyes in Fluorescence Sensing of HClO and SO 2. Anal Chem 2021; 93:5194-5200. [PMID: 33739079 DOI: 10.1021/acs.analchem.0c05266] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Benzopyrylium-coumarin fluorescent probes for sensing hypochlorous acid (HClO) or sulfur dioxide (SO2) are unable to distinguish between HClO and SO2 because the two compounds can react with the 4-position of benzopyrylium-coumarin dyes through the nucleophilic attack. In the current work, we introduced a phenoxazine moiety to the benzopyrylium-coumarin dye to synthesize a new fluorescent probe PBC1, which can dually sense HClO and SO2 and generate distinct fluorescence signals with rapid response time and high sensitivity and selectivity. Moreover, probe PBC1 was also successfully utilized to detect intracellular HClO and SO2 in HeLa cells and zebrafish.
Collapse
Affiliation(s)
- Jinliang Han
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Sheng Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, Hunan 410083, China
| |
Collapse
|
15
|
Yao W, Cao Y, She M, Yan Y, Li J, Leng X, Liu P, Zhang S, Li J. Imaging and Monitoring the Hydrogen Peroxide Level in Heart Failure by a Fluorescent Probe with a Large Stokes Shift. ACS Sens 2021; 6:54-62. [PMID: 33301300 DOI: 10.1021/acssensors.0c01707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Heart failure is the terminal stage of many cardiovascular diseases and is considered to be closely related to oxidative stress. Early understanding of pathogenesis can greatly improve the treatment and reduce the mortality of heart disease. In this work, based on the analysis of coumarin derivates by theoretical calculations, we designed and synthesized a fluorescent probe BCO with a large Stokes shift (107 nm) and excellent selectivity toward H2O2 in a living system. The distribution of H2O2 in the heart and thoracic aorta tissues was imaged with the aid of the probe BCO, which demonstrated that the cellular H2O2 level is upregulated in heart failure. This work provides a useful tool, BCO, for the evaluation of cellular oxidative stress and to further understand the pathophysiology process of heart disease.
Collapse
Affiliation(s)
- Wenxin Yao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Yanjun Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- The College of Life Sciences, School of Pharmacy, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Yuanyuan Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Jinxin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Xin Leng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi’an, Shaanxi 710069, P. R. China
- Lab of Tissue Engineering, the College of Life Sciences, Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, Shaanxi 710069, P. R. China
| |
Collapse
|
16
|
Song Q, Zhou B, Zhang D, Chi H, Jia H, Zhu P, Zhang Z, Meng Q, Zhang R. A reversible near-infrared fluorescence probe for the monitoring of HSO 3−/H 2O 2-regulated cycles in vivo. NEW J CHEM 2021. [DOI: 10.1039/d1nj03507j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A near-infrared (NIR) fluorescent probe (XC) was constructed for the reversible detection of HSO3−/H2O2 in biosystems. The practical applications of XC were also demonstrated by the quantitative analysis of HSO3− in white wine and sugar samples.
Collapse
Affiliation(s)
- Qiuying Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Bo Zhou
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Dongyu Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Hongmin Jia
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Peixun Zhu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Qingtao Meng
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
17
|
Li F, Tang Y, Guo R, Lin W. Development of an Ultrasensitive Mitochondria-Targeted Near Infrared Fluorescent Probe for SO2 and Its Imaging in Living Cells and Mice. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Ren H, Huo F, Wu X, Liu X, Yin C. An ESIPT-induced NIR fluorescent probe to visualize mitochondrial sulfur dioxide during oxidative stress in vivo. Chem Commun (Camb) 2021; 57:655-658. [DOI: 10.1039/d0cc07398a] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An ESIPT-induced NIR fluorescent probe can visualize mitochondrial sulfur dioxide during oxidative stress in vivo.
Collapse
Affiliation(s)
- Haixian Ren
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
| | - Fangjun Huo
- Research Institute of Applied Chemistry
- Shanxi University
- Taiyuan 030006
- China
| | - Xia Wu
- Singapore University of Technology and Design
- Singapore
| | - Xiaogang Liu
- Singapore University of Technology and Design
- Singapore
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Institute of Molecular Science
- Shanxi University
- Taiyuan 030006
| |
Collapse
|
19
|
Wei YF, Wu MX, Wei XR, Sun R, Xu YJ, Ge JF. The fluorescent probe based on methyltetrahydroxanthylium skeleton for the detection of hydrazine. Talanta 2020; 218:121164. [DOI: 10.1016/j.talanta.2020.121164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023]
|
20
|
A novel mitochondrial-targeted two-photon fluorescent probe for ultrafast monitoring of SO2 derivatives and its applications. Talanta 2020; 217:121086. [DOI: 10.1016/j.talanta.2020.121086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
|
21
|
Deng Z, Li F, Zhao G, Yang W, Hu Y. A mitochondrion-targeted dual-site fluorescent probe for the discriminative detection of SO32− and HSO3− in living HepG-2 cells. RSC Adv 2020; 10:26349-26357. [PMID: 35519787 PMCID: PMC9055423 DOI: 10.1039/d0ra01233e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/28/2020] [Indexed: 12/30/2022] Open
Abstract
Sulfur dioxide, known as an environmental pollutant, produced during industrial productions is also a common food additive that is permitted worldwide. In living organisms, sulfur dioxide forms hydrates of sulfite (SO2·H2O), bisulfite (HSO3−) and sulfite (SO32−) under physiological pH conditions; these three exist in a dynamic balance and play a role in maintaining redox balance, further participating in a wide range of physiological and pathological processes. On the basis of the differences in nucleophilicity between SO32− and HSO3−, for the first time, we built a mitochondrion-targeted dual-site fluorescent probe (Mito-CDTH-CHO) based on benzopyran for the highly specific detection of SO32− and HSO3− with two diverse emission channels. Mito-CDTH-CHO can discriminatively respond to the levels of HSO3− and SO32−. Besides, its advantages of low cytotoxicity, superior biocompatibility and excellent mitochondrial enrichment ability contribute to the detection and observation of the distribution of sulfur dioxide derivatives in living organisms as well as allowing further studies on the physiological functions of sulfur dioxide. Rational design and sensing mechanism of a dual-site fluorescence probe for HSO3− and SO32−.![]()
Collapse
Affiliation(s)
- Zhenmei Deng
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Fangzhao Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Guomin Zhao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Wenge Yang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yonghong Hu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
22
|
Zhou R, Cui G, Qi Q, Huang W, Yang L. The synthesis and bioimaging of a biocompatible hydrogen sulfide fluorescent probe with high sensitivity and selectivity. Analyst 2020; 145:2305-2310. [PMID: 32020141 DOI: 10.1039/c9an02323b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogen sulfide (H2S), a well-known poisonous gas, has been recognized as a critical endogenous gas transmitter in the past decade.
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P.R. China
| | - Guiling Cui
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Qingrong Qi
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Wencai Huang
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- P.R. China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
23
|
Wang H, Chen B, Zhou Y, Zhou Y. A Highly Selective Fluorescence-Enhanced Probe for the Rapid Detection of SO2 Derivatives and Its Bio-Imaging in Living Cells. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|