1
|
Oheix E, Daou TJ, Pieuchot L. Antimicrobial zeolites and metal-organic frameworks. MATERIALS HORIZONS 2024; 11:6222-6256. [PMID: 39291597 DOI: 10.1039/d4mh00259h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The current surge in antibiotic resistance and the emergence of pandemics have created an urgent need for novel antimicrobial strategies. The controlled release of antimicrobial active principles remains the most viable strategy to date, and transition metal ions currently represent the main alternative to antibiotics. In this review, we explore the potential of two types of materials, zeolites and metal-organic frameworks (MOFs), for the controlled release of antimicrobial active principles, notably transition metal ions. These materials have unique crystalline microporous structures that act as reservoirs, enabling sustained bactericidal effects in various applications such as coatings, packaging, and medical devices. However, there are currently no convenient and standardised methods for evaluating their metal ion release and antimicrobial efficacy. This work discusses analytical techniques and the proposed mechanisms of action while highlighting recent advances in film, membrane, and coating technologies. By addressing the current limitations, microporous materials can revolutionise antimicrobial approaches, offering enhanced effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Emmanuel Oheix
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| | - T Jean Daou
- Aptar CSP Technologies, 9 rue du Sandholz, Niederbronn les Bains, France.
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute Alsace (UHA), CNRS, UMR 7361, 3 bis rue Alfred Werner, F-68093 Mulhouse, France.
- Université de Strasbourg (UniStra), F-67000 Strasbourg, France
| |
Collapse
|
2
|
Mujtaba AG, Topuz B, Karakeçili A. Hybrid poly(lactide-co-glycolide) membranes incorporated with Doxycycline-loaded copper-based metal-organic nanosheets as antibacterial platforms. Biomed Mater 2024; 20:015011. [PMID: 39514973 DOI: 10.1088/1748-605x/ad906b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The rise of antimicrobial resistance necessitates innovative strategies to combat persistent infections. Metal-organic frameworks (MOFs) have attracted significant attention as antibiotic carriers due to their high drug loading capacity and structural adaptability. In particular, 2D MOF nanosheets are emerging as a notable alternative to their traditional 3D relatives due to their remarkable advantages in enhanced surface area, flexibility and exposed active region properties. Herein, we synthesized 2D copper 1,4-benzendicarboxylate (CuBDC) nanosheets and utilized them as a carrier and controlled release system for Doxycycline (Doxy@CuBDC), for the first time. The Doxy@CuBDC nanosheets were subsequently incorporated into Poly(lactic-co-glycolic acid) (PLGA) electrospun membranes (Doxy@CuBDC/PLGA). The resultant bioactive fibrous membranes exhibited double-barrier controlled release properties, extending the Doxy release up to ∼9 d at pH 7.4 and 5.5. Significant inhibitory effects againstStaphylococcus aureusandEscherichia coliwere observed. The morphological analyses revealed the deformed bacterial cell structures on Doxy@CuBDC/PLGA membranes that indicates potent bactericidal activity. Furthermore, cytotoxicity assays demonstrated the non-toxic nature of the fabricated membranes, underscoring their potential use for biomedical applications. Overall, the hybrid antibacterial PLGA membranes present a promising strategy for combating microbial infections while maintaining biocompatibility and offer a versatile approach for biomedical material design and surface coatings (e.g. wound dressings, implants).
Collapse
Affiliation(s)
- Ayse Gunyakti Mujtaba
- Biotechnology Institute, Ankara University, Gümüşdere 60. Yıl Yerleşkesi Keçiören, Ankara 06135, Turkey
| | - Berna Topuz
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey
| |
Collapse
|
3
|
Farwa U, Sandhu ZA, Kiran A, Raza MA, Ashraf S, Gulzarab H, Fiaz M, Malik A, Al-Sehemi AG. Revolutionizing environmental cleanup: the evolution of MOFs as catalysts for pollution remediation. RSC Adv 2024; 14:37164-37195. [PMID: 39569125 PMCID: PMC11578092 DOI: 10.1039/d4ra05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/19/2024] [Indexed: 11/22/2024] Open
Abstract
The global problem of ecological safety and public health necessitates, the development of new sustainable ideas for pollution remediation. In recent development, metal-organic frameworks (MOF) are the emerging technology with remarkable potential, which have been employed in environmental remediation. MOFs are networks that are created by the coordination of metals or polyanions with ligands and contain organic components that can be customized. The interesting features of MOFs are a large surface area, tuneable porosity, functional diversity, and high predictability of pollutant adsorption, catalysis, and degradation. It is a solid material that occupies a unique position in the war against environmental pollutants. One of the main benefits of MOFs is that they exhibit selective adsorption of a wide range of pollutants, including heavy metals, organics, greenhouse gases, water and soil. Only particles with the right combination of pore size and chemical composition will achieve this selectivity, derived from the high level of specificity. Besides, they possess high catalytic ability for the removal of pollutants by means of different methods such as photocatalysis, Fenton-like reactions, and oxidative degradation. By generating mobile active sites within the framework of MOFs, we can not only ensure high affinity for pollutants but also effective transformation of toxic chemicals into less harmful or even inert end products. However, the long-term stability of MOFs is becoming more important as eco-friendly parts are replaced with those that can be used repeatedly, and systems based on MOFs that can remove pollutants in more than one way are fabricated. MOFs can reduce waste production, energy consumption as compared to the other removal process. With its endless capacities, MOF technology brings a solution to the environmental cleansing problem, working as a flexible problem solver from one field to another. The investigation of MOF synthesis and principles will allow researchers to fully understand the potential of MOFs in environmental problem solving, making the world a better place for all of us.
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Azwa Kiran
- Department of Chemistry, Faculty of Science, University of Engineering and Technology Lahore Lahore Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Hamza Gulzarab
- Department of Chemistry, Faculty of Science, University of Gujrat, Hafiz Hayat Campus Gujrat 50700 Pakistan
| | - Muhammad Fiaz
- Department of Chemistry, University of Texas at Austin USA
| | - Adnan Malik
- Department of Physics and Chemistry, Faculty of Applied Science and Technology, University Tun Hussein Onn Malaysia Pagoh Campus Malaysia
| | | |
Collapse
|
4
|
Cai W, Gao Y, Feng W, Xu J, Wang M, Sun J, Cao M, Qu Z, Liu X, Huang X, Zhou H, Huang Z. Rapidly Prepared Lithophilic Frameworks Stabilizes Lithium Anodes via Altered Lithium Deposition Patterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403831. [PMID: 38949398 DOI: 10.1002/smll.202403831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.
Collapse
Affiliation(s)
- Weiming Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuancan Gao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wei Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Junwei Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Meng Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiale Sun
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengxue Cao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongqing Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xuying Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Haikal RR, El Salakawy N, Ibrahim A, Ali SL, Mamdouh W. Synergistic antioxidant and antibacterial effects of a Zn-ascorbate metal-organic framework loaded with marjoram essential oil. NANOSCALE ADVANCES 2024; 6:4664-4671. [PMID: 39263404 PMCID: PMC11386125 DOI: 10.1039/d4na00519h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Antimicrobial resistance (AMR) has become an immense threat to public health leading to an urgent need for development of new technologies to tackle such a challenge. Plant-based drugs, specifically essential oils (EOs) and plant extracts, have shown significant potential as effective green antimicrobial agents. However, they suffer from high volatility and low thermal stability resulting in their inefficient utilization in commercial settings. Among the various nanoencapsulation technologies reported, metal-organic frameworks (MOFs) have been recently investigated as potential nanocarriers of EOs in attempt to enhance their stability. Herein, we report the utilization of Zn-ascorbate MOF for the encapsulation of marjoram essential oil (MEO) with synergistic antioxidant and antibacterial activities. The prepared composite was thoroughly characterized via a number of techniques and its antibacterial performance was investigated against various strains of Gram-negative and Gram-positive bacteria. The results demonstrated that the antioxidant activity originated from the ascorbic acid ligand (l-Asc), while the antibacterial activity originated from Zn2+ ions as well as encapsulated MEO.
Collapse
Affiliation(s)
- Rana R Haikal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Noha El Salakawy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Alaa Ibrahim
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Shaimaa L Ali
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC) AUC Avenue, P. O. Box 74 New Cairo 11835 Egypt
| |
Collapse
|
6
|
Zarrabi A, Ghasemi-Fasaei R, Ronaghi A, Zeinali S, Safarzadeh S. Application of synthesized metal-trimesic acid frameworks for the remediation of a multi-metal polluted soil and investigation of quinoa responses. PLoS One 2024; 19:e0310054. [PMID: 39240855 PMCID: PMC11379216 DOI: 10.1371/journal.pone.0310054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/16/2024] [Indexed: 09/08/2024] Open
Abstract
Metal-organic frameworks (MOFs) are structures with high surface area that can be used to remove heavy metals (HMs) efficiently from the environment. The effect of MOFs on HMs removal from contaminated soils has not been already investigated. Monometallic MOFs are easier to synthesize with high efficiency, and it is also important to compare their structures. In the present study, Zn-BTC, Cu-BTC, and Fe-BTC as three metal-trimesic acid MOFs were synthesized from the combination of zinc (Zn), copper (Cu), and iron (Fe) nitrates with benzene-1,3,5-tricarboxylic acid (H3BTC) by solvothermal method. BET analysis showed that the specific surface areas of the Zn-BTC, Cu-BTC, and Fe-BTC were 502.63, 768.39 and 92.4 m2g-1, respectively. The synthesized MOFs were added at the rates of 0.5 and 1% by weight to the soils contaminated with 100 mgkg-1 of Zn, nickel (Ni), lead (Pb), and cadmium (Cd). Then quinoa seeds were sown in the treated soils. According to the results, the uptakes of all four HMs by quinoa were the lowest in the Cu-BTC 1% treated pots and the lowest uptakes were observed for Pb in shoot and root (4.87 and 0.39, μgpot-1, respectively). The lowest concentration of metal extracted with EDTA in the post-harvest soils was for Pb (11.86 mgkg-1) in the Cu-BTC 1% treatment. The lowest metal pollution indices were observed after the application of Cu-BTC 1%, which were 20.29 and 11.53 for shoot and root, respectively. With equal molar ratios, highly porous and honeycomb-shaped structure, the most crystallized and the smallest constituent particle size (34.64 nm) were obtained only from the combination of Cu ions with H3BTC. The lowest porosity, crystallinity, and a semi-gel like feature was found for the Fe-BTC. The synthesized Cu-BTC showed the highest capacity of stabilizing HMs, especially Pb in the soil compared to the Zn-BTC and the Fe-BTC. The highly porous characteristic of the Cu-BTC can make the application of this MOF as a suitable environmental solution for the remediation of high Pb-contaminated soils.
Collapse
Affiliation(s)
- Amir Zarrabi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Reza Ghasemi-Fasaei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Abdolmajid Ronaghi
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Sedigheh Zeinali
- Department of Nanochemical Engineering Faculty of Advanced Technology, Shiraz University, Shiraz, Iran
| | - Sedigheh Safarzadeh
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
7
|
Quiñones-Vico MI, Ubago-Rodríguez A, Fernández-González A, Sanabria-de la Torre R, Sierra-Sánchez Á, Montero-Vilchez T, Sánchez-Díaz M, Arias JL, Arias-Santiago S. Antibiotic Nanoparticles-Loaded Wound Dressings Against Pseudomonas aeruginosa's Skin Infection: A Systematic Review. Int J Nanomedicine 2024; 19:7895-7926. [PMID: 39108405 PMCID: PMC11302427 DOI: 10.2147/ijn.s469724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/07/2024] [Indexed: 01/29/2025] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common nosocomial pathogen that can cause severe infections in critically ill patients. Due to its resistance to multiple drugs, it is challenging to treat, which can result in serious illness and death. Conventional treatments for infected wounds often involve the topical or systemic application of antibiotics, which can lead to systemic toxicity and the development of drug resistance. The combination of wound dressings that promote wound healing with nanoparticles (NPs) represents a revolutionary strategy for optimizing the safety and efficacy of antibiotics. This review assesses a systematic search to identify the latest approaches where the evaluation of wound dressings loaded with antibiotic NPs is conducted. The properties of NPs, the features of wound dressings, the antimicrobial activity and biocompatibility of the different strategies are analyzed. The results indicate that most research in this field is focused on dressings loaded with silver NPs (57.1%) or other inorganic materials (22.4%). Wound dressings loaded with polymeric NPs and carbon-based NPs represent 14.3% and 6.1% of the evaluated studies, respectively. Nevertheless, there are no clinical trials that have evaluated the efficacy of NPs-loaded wound dressings in patients. Further research is required to ensure the safety of these treatments and to translate the findings from the bench to the bedside.
Collapse
Affiliation(s)
- María I Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
| | - Raquel Sanabria-de la Torre
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Álvaro Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, School of Medicine, University of Granada, Granada, 18016, Spain
| | - Trinidad Montero-Vilchez
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| | - José L Arias
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, 18071, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Granada, 18014, Spain
- Instituto de Investigación Biosanitaria Granada ibs.GRANADA, Granada, 18014, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, Sevilla, 41092, Spain
- Medicine Department, School of Medicine, University of Granada, Granada, 18016, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, Granada, 18014, Spain
| |
Collapse
|
8
|
Khan MUA, Aslam MA, Yasin T, Abdullah MFB, Stojanović GM, Siddiqui HM, Hasan A. Metal-organic frameworks: synthesis, properties, wound dressing, challenges and scopes in advanced wound dressing. Biomed Mater 2024; 19:052001. [PMID: 38976990 DOI: 10.1088/1748-605x/ad6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Wound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention. Metal-organic frameworks (MOFs), owning to their peculiar physicochemical characteristics, are now considered a promising class of well-suited porous materials for wound healing in addition to their other biological applications. This detailed literature review provides an overview of the latest developments in MOFs for wound healing applications. We have discussed the synthesis, essential biomedical properties, wound-healing mechanism, MOF-based dressing materials, and their wound-healing applications. The possible major challenges and limitations of MOFs have been discussed, along with conclusions and future perspectives. This overview of the literature review addresses MOFs-based wound healing from several angles and covers the most current developments in the subject. The readers may discover how the MOFs advanced this discipline by producing more inventive, useful, and successful dressings. It influences the development of future generations of biomaterials for the healing and regeneration of skin wounds.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Tooba Yasin
- Polymer Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
d’Agostino S, Macchietti L, Turner RJ, Grepioni F. From 0D-complex to 3D-MOF: changing the antimicrobial activity of zinc(II) via reaction with aminocinnamic acids. Front Chem 2024; 12:1430457. [PMID: 39040090 PMCID: PMC11260639 DOI: 10.3389/fchem.2024.1430457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Combining zinc nitrate with 3- and/or 4- aminocinnamic acid (3-ACA and 4-ACA, respectively) leads to the formation of the 0D complex [Zn(4-AC)2(H2O)2], the 1D coordination polymer [Zn(3-AC)(4-AC)], and the 2D and 3D MOFs [Zn(3-AC)2]∙2H2O and [Zn(4-AC)2]∙H2O, respectively. These compounds result from the deprotonation of the acid molecules, with the resulting 3- and 4-aminocinnamate anions serving as bidentate terminal or bridging ligands. All solids were fully characterized via single crystal and powder X-ray diffraction and thermal techniques. Given the mild antimicrobial properties of cinnamic acid derivatives and the antibacterial nature of the metal cation, these compounds were assessed and demonstrated very good planktonic cell killing as well as inhibition of biofilm growth against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Simone d’Agostino
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Laura Macchietti
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Fabrizia Grepioni
- Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Bologna, Italy
| |
Collapse
|
10
|
Zhao X, Chen Z, Zhang S, Hu Z, Shan J, Wang M, Chen XL, Wang X. Application of metal-organic frameworks in infectious wound healing. J Nanobiotechnology 2024; 22:387. [PMID: 38951841 PMCID: PMC11218092 DOI: 10.1186/s12951-024-02637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, P. R. China
| | - Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Zhiyuan Hu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xianwen Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, P. R. China.
| |
Collapse
|
11
|
Hubab M, Al-Ghouti MA. Recent advances and potential applications for metal-organic framework (MOFs) and MOFs-derived materials: Characterizations and antimicrobial activities. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00837. [PMID: 38577654 PMCID: PMC10992724 DOI: 10.1016/j.btre.2024.e00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Microbial infections, particularly those caused by antibiotic-resistant pathogens, pose a critical global health threat. Metal-Organic Frameworks (MOFs), porous crystalline structures built from metal ions and organic linkers, initially developed for gas adsorption, have emerged as promising alternatives to traditional antibiotics. This review, covering research up to 2023, explores the potential of MOFs and MOF-based materials as broad-spectrum antimicrobial agents against bacteria, viruses, fungi, and even parasites. It delves into the historical context of antimicrobial agents, recent advancements in MOF research, and the diverse synthesis techniques employed for their production. Furthermore, the review comprehensively analyzes the mechanisms of action by which MOFs combat various microbial threats. By highlighting the vast potential of MOFs, their diverse synthesis methods, and their effectiveness against various pathogens, this study underscores their potential as a novel solution to the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Muhammad Hubab
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammad A. Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| |
Collapse
|
12
|
Eldin ZE, Dishisha T, Sayed OM, Salama HM, Farghali A. A novel synergistic enzyme-antibiotic therapy with immobilization of mycobacteriophage Lysin B enzyme onto Rif@UiO-66 nanocomposite for enhanced inhaled anti-TB therapy; Nanoenzybiotics approach. Int J Biol Macromol 2024; 262:129675. [PMID: 38280693 DOI: 10.1016/j.ijbiomac.2024.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 (LysB)enzyme in the treatment of multi-drug resistant tuberculosis (MDR-TB) infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination. UiO-66 nanoparticles were synthesized under mild conditions in which the antimycobacterial agent (rifampicin) was loaded (Rif@UiO-66) and LysB D29 enzyme immobilized onto Rif@UiO-66, which were further characterized. Subsequently, the antibacterial activity of different ratios of Rif@UiO-66 and LysB/Rif@uio-66 against the nonpathogenic tuberculosis model Mycobacterium smegmatis (M. smegmatis) was evaluated by minimum inhibitory concentration (MIC) tests. Impressively, the MIC of LysB/Rif@uio-66 was 16-fold lower than that of pure rifampicin. In vitro and in vivo toxicity studies proved that LysB/Rif@UiO-66 is a highly biocompatible therapy for pulmonary infection. A biodistribution assay showed that LysB/Rif@UiO-66 showed a 5.31-fold higher drug concentration in the lungs than free rifampicin. A synergistic interaction between UiO-66, rifampicin and the mycobacteriophage lysB D29 enzyme was shown in the computational method (docking). Therefore, all results indicated that the LysB/Rif@UiO-66 nanocomposite exhibited promising innovative enzyme-antibiotic therapy for tuberculosis treatment.
Collapse
Affiliation(s)
- Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
13
|
Bi C, Zhang C, Wang C, Zhu L, Zhu R, Liu L, Wang Y, Ma F, Dong H. Construction of oxime-functionalized PCN-222 based on the directed molecular structure design for recovering uranium from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16554-16570. [PMID: 38319420 DOI: 10.1007/s11356-024-32208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(μ3-O)4(μ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.
Collapse
Affiliation(s)
- Changlong Bi
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Lien Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Ruiqi Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
| | - Yudan Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Fuqiu Ma
- Yantai Research Institute of Harbin Engineering University, Yantai, 264006, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| |
Collapse
|
14
|
Farasati Far B, Rabiee N, Iravani S. Environmental implications of metal-organic frameworks and MXenes in biomedical applications: a perspective. RSC Adv 2023; 13:34562-34575. [PMID: 38024989 PMCID: PMC10668918 DOI: 10.1039/d3ra07092a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Metal-organic frameworks (MOFs) and MXenes have demonstrated immense potential for biomedical applications, offering a plethora of advantages. MXenes, in particular, exhibit robust mechanical strength, hydrophilicity, large surface areas, significant light absorption potential, and tunable surface terminations, among other remarkable characteristics. Meanwhile, MOFs possess high porosity and large surface area, making them ideal for protecting active biomolecules and serving as carriers for drug delivery, hence their extensive study in the field of biomedicine. However, akin to other (nano)materials, concerns regarding their environmental implications persist. The number of studies investigating the toxicity and biocompatibility of MXenes and MOFs is growing, albeit further systematic research is needed to thoroughly understand their biosafety issues and biological effects prior to clinical trials. The synthesis of MXenes often involves the use of strong acids and high temperatures, which, if not properly managed, can have adverse effects on the environment. Efforts should be made to minimize the release of harmful byproducts and ensure proper waste management during the production process. In addition, it is crucial to assess the potential release of MXenes into the environment during their use in biomedical applications. For the biomedical applications of MOFs, several challenges exist. These include high fabrication costs, poor selectivity, low capacity, the quest for stable and water-resistant MOFs, as well as difficulties in recycling/regeneration and maintaining chemical/thermal/mechanical stability. Thus, careful consideration of the biosafety issues associated with their fabrication and utilization is vital. In addition to the synthesis and manufacturing processes, the ultimate utilization and fate of MOFs and MXenes in biomedical applications must be taken into account. While numerous reviews have been published regarding the biomedical applications of MOFs and MXenes, this perspective aims to shed light on the key environmental implications and biosafety issues, urging researchers to conduct further research in this field. Thus, the crucial aspects of the environmental implications and biosafety of MOFs and MXenes in biomedicine are thoroughly discussed, focusing on the main challenges and outlining future directions.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology Tehran 1684611367 Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University Sydney New South Wales 2109 Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University Perth WA 6150 Australia
| | | |
Collapse
|
15
|
Saif MS, Hasan M, Zafar A, Ahmed MM, Tariq T, Waqas M, Hussain R, Zafar A, Xue H, Shu X. Advancing Nanoscale Science: Synthesis and Bioprinting of Zeolitic Imidazole Framework-8 for Enhanced Anti-Infectious Therapeutic Efficacies. Biomedicines 2023; 11:2832. [PMID: 37893205 PMCID: PMC10604899 DOI: 10.3390/biomedicines11102832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bacterial infectious disorders are becoming a major health problem for public health. The zeolitic imidazole framework-8 with a novel Cordia myxa extract-based (CME@ZIF-8) nanocomposite showed variable functionality, high porosity, and bacteria-killing activity against Staphylococcus aureus, and Escherichia coli strains have been created by using a straightforward approach. The sizes of synthesized zeolitic imidazole framework-8 (ZIF-8) and CME@ZIF-8 were 11.38 nm and 12.44 nm, respectively. Prepared metal organic frameworks have been characterized by gas chromatography-mass spectroscopy, Fourier transform spectroscopy, UV-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. An antibacterial potential comparison between CME@ZIF-8 and zeolitic imidazole framework-8 has shown that CME@ZIF-8 was 31.3%, 28.57%, 46%, and 47% more efficient than ZIF-8 against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, while it was 31.25%, 33.3%, 46%, and 46% more efficient than the commercially available ciprofloxacin drug against Staphylococcus aureus and 43.7%, 42.8%, 35.7%, and 70% more efficient against Escherichia coli, respectively, for 750, 500, 250, and 125 μg mL-1. Minimum inhibitory concentration values of CME@ZIF-8 for Escherichia coli and Staphylococcus aureus were 15.6 and 31.25 μg/mL respectively, while the value of zeolitic imidazole framework-8 alone was 62.5 μg/mL for both Escherichia coli and Staphylococcus aureus. The reactive oxygen species generated by CME@ZIF-8 destroys the bacterial cell and its organelles. Consequently, the CME@ZIF-8 nanocomposites have endless potential applications for treating infectious diseases.
Collapse
Affiliation(s)
- Muhammad Saqib Saif
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Murtaza Hasan
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ayesha Zafar
- School of Engineering, Royal Melbourne Institute of Technology (RMIT) University, 24 La Trobe Street, Melbourne, VIC 3001, Australia
| | - Muhammad Mahmood Ahmed
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Faculty of Chemical and Biological Science, Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Faculty of Chemical and Biological Science, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Faculty of Chemical and Biological Science, Department of Veterinary Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Amna Zafar
- Faculty of Chemical and Biological Science, Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Huang Xue
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
16
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
17
|
Curcumin-regulated constructing of defective zinc-based polymer-metal-organic framework as long-acting antibacterial platform for efficient wound healing. J Colloid Interface Sci 2023; 641:59-69. [PMID: 36924546 DOI: 10.1016/j.jcis.2023.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
A dual-modal antibacterial platform has been established for highly efficient wound healing infected by bacteria based on a defective zinc-based metal-organic framework composite, which was synthesized using 1,4-phthalic acid-based polyether polymer (L8) as ligand, curcumin as regulator, and Zn2+ as metal coordinated center (Cur@Zn-MOF). In addition to the integration of the features of polymer-MOF synthesized using L8 (such as high water stability and controllable and long-term release of Zn2+) and Zn-bioMOF prepared using curcumin as ligand (such as feasible release of curcumin and Zn2+ and good biocompatibility), the Cur@Zn-MOF bioplatform also possessed plenty of structure defects. Comparing with Zn-bioMOF and polyZn-MOF synthesized using the sole ligand, the smaller released amount of curcumin (6.08 μg mL-1) and higher release level of Zn2+ ions (5.68 μg mL-1) were simultaneously achieved for the defective Cur@Zn-MOF within a long-term duration (48 h). The synergistic effect afforded Cur@Zn-MOF the high sterilization performance toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) even at the low usage of 125 μg mL-1. The in vivo wound healing effect further confirmed the superior treatment ability of Cur@Zn-MOF toward the bacterium-infected wound. Also, the negligible cytotoxicity and low hemolysis of Cur@Zn-MOF greatly promoted the viability of human skin fibroblasts. Accordingly, this work can provide a new dual-modal bioplatform based on the functional MOF via the controllable release of antibacterial drug and metal ions for the efficient wound healing.
Collapse
|
18
|
Huang R, Zhou Z, Lan X, Tang FK, Cheng T, Sun H, Cham-Fai Leung K, Li X, Jin L. Rapid synthesis of bismuth-organic frameworks as selective antimicrobial materials against microbial biofilms. Mater Today Bio 2023; 18:100507. [PMID: 36504541 PMCID: PMC9730226 DOI: 10.1016/j.mtbio.2022.100507] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Antibiotic resistance is a global public health threat, and urgent actions should be undertaken for developing alternative antimicrobial strategies and approaches. Notably, bismuth drugs exhibit potent antimicrobial effects on various pathogens and promising efficacy in tackling SARS-CoV-2 and related infections. As such, bismuth-based materials could precisely combat pathogenic bacteria and effectively treat the resultant infections and inflammatory diseases through a controlled release of Bi ions for targeted drug delivery. Currently, it is a great challenge to rapidly and massively manufacture bismuth-based particles, and yet there are no reports on effectively constructing such porous antimicrobial-loaded particles. Herein, we have developed two rapid approaches (i.e., ultrasound-assisted and agitation-free methods) to synthesizing bismuth-based materials with ellipsoid- (Ellipsoids) and rod-like (Rods) morphologies respectively, and fully characterized physicochemical properties. Rods with a porous structure were confirmed as bismuth metal-organic frameworks (Bi-MOF) and aligned with the crystalline structure of CAU-17. Importantly, the formation of Rods was a 'two-step' crystallization process of growing almond-flake-like units followed by stacking into the rod-like structure. The size of Bi-MOF was precisely controlled from micro-to nano-scales by varying concentrations of metal ions and their ratio to the ligand. Moreover, both Ellipsoids and Rods showed excellent biocompatibility with human gingival fibroblasts and potent antimicrobial effects on the Gram-negative oral pathogens including Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Both Ellipsoids and Rods at 50 μg/mL could disrupt the bacterial membranes, and particularly eliminate P. gingivalis biofilms. This study demonstrates highly efficient and facile approaches to synthesizing bismuth-based particles. Our work could enrich the administration modalities of metallic drugs for promising antibiotic-free healthcare.
Collapse
Affiliation(s)
- Regina Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Zhiwen Zhou
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Fung Kit Tang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Tianfan Cheng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong SAR, China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University, Hong Kong SAR, China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Metal-Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics 2023; 15:pharmaceutics15010274. [PMID: 36678903 PMCID: PMC9861052 DOI: 10.3390/pharmaceutics15010274] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing global crisis with an increasing number of untreatable or exceedingly difficult-to-treat bacterial infections, due to their growing resistance to existing drugs. It is predicted that AMR will be the leading cause of death by 2050. In addition to ongoing efforts on preventive strategies and infection control, there is ongoing research towards the development of novel vaccines, antimicrobial agents, and optimised diagnostic practices to address AMR. However, developing new therapeutic agents and medicines can be a lengthy process. Therefore, there is a parallel ongoing worldwide effort to develop materials for optimised drug delivery to improve efficacy and minimise AMR. Examples of such materials include functionalisation of surfaces so that they can become self-disinfecting or non-fouling, and the development of nanoparticles with promising antimicrobial properties attributed to their ability to damage numerous essential components of pathogens. A relatively new class of materials, metal-organic frameworks (MOFs), is also being investigated for their ability to act as carriers of antimicrobial agents, because of their ultrahigh porosity and modular structures, which can be engineered to control the delivery mechanism of loaded drugs. Biodegradable polymers have also been found to show promising applications as antimicrobial carriers; and, recently, several studies have been reported on delivery of antimicrobial drugs using composites of MOF and biodegradable polymers. This review article reflects on MOFs and polymer-MOF composites, as carriers and delivery agents of antimicrobial drugs, that have been studied recently, and provides an overview of the state of the art in this highly topical area of research.
Collapse
|
20
|
Dexamethasone-loaded zeolitic imidazolate frameworks nanocomposite hydrogel with antibacterial and anti-inflammatory effects for periodontitis treatment. Mater Today Bio 2022; 16:100360. [PMID: 35937574 PMCID: PMC9352959 DOI: 10.1016/j.mtbio.2022.100360] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Periodontitis is a bacterial-induced, chronic inflammatory disease characterized by progressive destruction of tooth-supporting structures. Pathogenic bacteria residing in deep periodontal pockets after traditional manual debridement can still lead to local inflammatory microenvironment, which remains a challenging problem and an urgent need for better therapeutic strategies. Here, we integrated the advantages of metal-organic frameworks (MOFs) and hydrogels to prepare an injectable nanocomposite hydrogel by incorporating dexamethasone-loaded zeolitic imidazolate frameworks-8 (DZIF) nanoparticles into the photocrosslinking matrix of methacrylic polyphosphoester (PPEMA) and methacrylic gelatin (GelMA). The injectable hydrogel could be easily injected into deep periodontal pockets, achieving high local concentrations without leading to antibiotic resistance. The nanocomposite hydrogel had high antibacterial activity and constructs with stable microenvironments maintain cell viability, proliferation, spreading, as well as osteogenesis, and down-regulated inflammatory genes expression in vitro. When evaluated on an experimental periodontitis rat model, micro-computed tomography and histological analyses showed that the nanocomposite hydrogel effectively reduced periodontal inflammation and attenuated inflammation-induced bone loss in a rat model of periodontitis. These findings suggest that the nanocomposite hydrogel might be a promising therapeutic candidate for treating periodontal disease.
Collapse
|
21
|
Elhassan E, Devnarain N, Mohammed M, Govender T, Omolo CA. Engineering hybrid nanosystems for efficient and targeted delivery against bacterial infections. J Control Release 2022; 351:598-622. [DOI: 10.1016/j.jconrel.2022.09.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 09/25/2022] [Indexed: 11/30/2022]
|
22
|
Jevtovic V, Alshammari N, Latif S, Alsukaibi AKD, Humaidi J, Alanazi TYA, Abdulaziz F, Matalka SI, Pantelić NĐ, Marković M, Rakić A, Dimić D. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Molecules 2022; 27:molecules27196322. [PMID: 36234859 PMCID: PMC9570950 DOI: 10.3390/molecules27196322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
New Ni (II) and Cu (II) complexes with pyridoxal-semicarbazone were synthesized and their structures were solved by X-ray crystallography. This analysis showed the bis-ligand octahedral structure of [Ni(PLSC-H)2]·H2O and the dimer octahedral structure of [Cu(PLSC)(SO4)(H2O)]2·2H2O. Hirshfeld surface analysis was employed to determine the most important intermolecular interactions in the crystallographic structures. The structures of both complexes were further examined using density functional theory and natural bond orbital analysis. The photocatalytic decomposition of methylene blue in the presence of both compounds was investigated. Both compounds were active toward E. coli and S. aureus, with a minimum inhibition concentration similar to that of chloramphenicol. The obtained complexes led to the formation of free radical species, as was demonstrated in an experiment with dichlorofluorescein-diacetate. It is postulated that this is the mechanistic pathway of the antibacterial and photocatalytic activities. Cyclic voltammograms of the compounds showed the peaks of the reduction of metal ions. A molecular docking study showed that the Ni(II) complex exhibited promising activity towards Janus kinase (JAK), as a potential therapy for inflammatory diseases, cancers, and immunologic disorders.
Collapse
Affiliation(s)
- Violeta Jevtovic
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Njood Alshammari
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Salman Latif
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | | | - Jamal Humaidi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Tahani Y. A. Alanazi
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Samah I. Matalka
- Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia
| | - Nebojša Đ. Pantelić
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Milica Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandra Rakić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
23
|
Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, Fallahi Nezhad F, Vijayakameswara Rao N, Omidifar N, Chiang WH. Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals (Basel) 2022; 15:ph15091137. [PMID: 36145358 PMCID: PMC9504826 DOI: 10.3390/ph15091137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/16/2022] Open
Abstract
The increasing rate of oral squamous cell carcinoma (OSCC) and the undesirable side effects of anticancer agents have enhanced the demand for the development of efficient, detectable, and targeted anticancer systems. Saponins are a diverse family of natural glycosides that have recently been evaluated as an effective compound for the targeted therapy of squamous cell carcinoma. Due to their porous nature and stable structure, metal–organic frameworks (MOFs) are a well-known substance form for various biological applications, such as drug delivery. In this study, we fabricated a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by modifying graphene oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as MOF core–shell nanocomposite. The characterization of the nanostructures was investigated by FTIR, TEM, EDX, FESEM, and BET. MTT assay was used to investigate the anticancer activity of these compounds on OSCC and PDL normal dental cells. The effect of the nanocomposites on OSCC was then investigated by studying apoptosis and necrosis using flow cytometry. The GO/rGO was decorated with a saponin–AlFu mixture to further investigate cytotoxicity. The results of the MTT assay showed that PDL cells treated with AlFu–GO–saponin at a concentration of 250 μg/mL had a viability of 74.46 ± 16.02%, while OSCC cells treated with this sample at a similar concentration had a viability of only 38.35 ± 19.9%. The anticancer effect of this nanostructure on OSCC was clearly demonstrated. Moreover, the number of apoptotic cells in the AlFu–GO–saponin and AlFu–rGO–saponin groups was 10.98 ± 2.36%–26.90 ± 3.24% and 15.9 ± 4.08%–29.88 ± 0.41%, respectively, compared with 2.52 ± 0.78%–1.31 ± 0.62% in the untreated group. This significant increase in apoptotic effect observed with AlFu–rGO–saponin was also reflected in the significant anticancer effect of saponin-loaded nanostructures. Therefore, this study suggests that an effective saponin delivery system protocol for the precise design and fabrication of anticancer nanostructures for OSCC therapy should be performed prior to in vivo evaluations.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Yasmin Ghahramani
- Department of Endodontics, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Rouhollah Azhdari
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Khadijeh Yousefi
- Department of Dental Materials and Biomaterials Research Centre, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz 71956-15787, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Fatemeh Fallahi Nezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
24
|
Arooj A, Tahir K, Ullah Khan A, Khan A, Jevtovic V, El-Zahhar AA, Alghamdi MM, Al-Shehri HS, Abdu Musad Saleh E, Asghar BH. One-step fabrication of surfactant mediated Pd/SiO2, A prospect toward therapeutic and photocatalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Jevtović V, Hamoud H, Al-Zahrani S, Alenezi K, Latif S, Alanazi T, Abdulaziz F, Dimić D. Synthesis, Crystal Structure, Quantum Chemical Analysis, Electrochemical Behavior, and Antibacterial and Photocatalytic Activity of Co Complex with Pyridoxal-(S-Methyl)-isothiosemicarbazone Ligand. Molecules 2022; 27:4809. [PMID: 35956756 PMCID: PMC9369583 DOI: 10.3390/molecules27154809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/17/2023] Open
Abstract
New complex Co(III) with ligand Pyridoxal-S-methyl-isothiosemicarbazone, (PLITSC) was synthesized. X-ray analysis showed the bis-ligand octahedral structure of the cobalt complex [Co(PLITSC-H)2]BrNO3·CH3OH (compound 1). The intermolecular interactions governing the crystal structure were described by the Hirsfeld surface analysis. The structure of compound 1 and the corresponding Zn complex (([Zn(PLTSC)(H2O)2]SO4·H2O)) were optimized at the B3LYP/6-31 + G (d,p)/LanL2DZ level of theory, and the applicability was assessed by comparison with the crystallographic structure. The natural bond orbital analysis was used for the discussion on the stability of formed compounds. The antibacterial activity of obtained complexes towards S. aureus and E. coli was determined, along with the effect of compound 1 on the formation of free radical species. Activity of compound 1 towards the removal of methylene blue was also investigated. The voltammograms of these compounds showed the reduction of metal ions, as well as the catalyzed reduction of CO2 in acidic media.
Collapse
Affiliation(s)
- Violeta Jevtović
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Haneen Hamoud
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salma Al-Zahrani
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Khalaf Alenezi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Tahani Alanazi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Fahad Abdulaziz
- Department of Chemistry, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; (V.J.); (H.H.); (S.A.-Z.); (K.A.); (S.L.); (T.A.); (F.A.)
| | - Dušan Dimić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Oladipo AC, Aderibigbe AD, Akpor OB, Abodunrin TO, Clayton HS, Tella AC. A sulfur-containing coordination polymer: remarkable heavy metal removal capacities and broad-spectrum antibacterial activities. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Adetola C. Oladipo
- Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria
- Department of Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Abiodun D. Aderibigbe
- Department of Chemistry, Federal University of Technology, Akure, Nigeria
- School of Nursing, University of Connecticut, Storrs, CT, USA
| | | | | | - Hadley S. Clayton
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| | - Adedibu C. Tella
- Department of Chemistry, University of Ilorin, Ilorin, Nigeria
- Department of Chemistry, University of South Africa, Pretoria, South Africa
| |
Collapse
|
27
|
Mei D, Liu L, Li H, Wang Y, Ma F, Zhang C, Dong H. Efficient uranium adsorbent with antimicrobial function constructed by grafting amidoxime groups on ZIF-90 via malononitrile intermediate. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126872. [PMID: 34399212 DOI: 10.1016/j.jhazmat.2021.126872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Herein, a dual-function Zeolitic Imidazole Frameworks (ZIFs) ZIF-90 grafted with malononitrile by Knoevenagel reaction and following with an amidoximation reaction to form an efficient U (VI) adsorbent (ZIF-90-AO). The strong chelation power of amidoxime groups (AO) with uranium and ZIF-90's mesoporous structure afforded ZIF-90-AO high maximum uranium adsorption capacity of 468.3 mg/g (pH = 5). In addition, the factors affecting uranium adsorption process were investigated by a batch of adsorption tests under different adsorption conditions. ZIF-90-AO displayed good selectivity to UO22+ in the solution containing multiple co-existing ions and good regeneration property. More importantly, ZIF-90-AO showed excellent antimicrobial property against both E. coli and S. aureus. Therefore, ZIF-90-AO is a U-adsorbent with great application value for removing U (VI) from wastewater due to the high U (VI) adsorption capacity in weak acid condition and good anti-biofouling properties.
Collapse
Affiliation(s)
- Douchao Mei
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute and Graduate School of Harbin Engineering University, Yantai 264006, China.
| | - Huan Li
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yudan Wang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Fuqiu Ma
- Yantai Research Institute and Graduate School of Harbin Engineering University, Yantai 264006, China; College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China.
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Yantai Research Institute and Graduate School of Harbin Engineering University, Yantai 264006, China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| |
Collapse
|
28
|
Yang M, Zhang J, Wei Y, Zhang J, Tao C. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. NANO RESEARCH 2022; 15:6220-6242. [PMID: 35578616 PMCID: PMC9094125 DOI: 10.1007/s12274-022-4302-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 05/03/2023]
Abstract
The rapid spread of staphylococcus aureus (S. aureus) causes an increased morbidity and mortality, as well as great economic losses in the world. Anti-S. aureus infection becomes a major challenge for clinicians and nursing professionals to address drug resistance. Hence, it is urgent to explore high efficiency, low toxicity, and environmental-friendly methods against S. aureus. Metal-organic frameworks (MOFs) represent great potential in treating S. aureus infection due to the unique features of MOFs including tunable chemical constitute, open crystalline structure, and high specific surface area. Especially, these properties endow MOF-based materials outstanding antibacterial effect, which can be mainly attributed to the continuously released active components and the exerted catalytic activity to fight bacterial infection. Herein, the structural characteristics of MOFs and evaluation method of antimicrobial activity are briefly summarized. Then we systematically give an overview on their recent progress on antibacterial mechanisms, metal ion sustained-release system, controlled delivery system, catalytic system, and energy conversion system based on MOF materials. Finally, suggestions and direction for future research to develop and mechanism understand MOF-based materials are discussed in antibacterial application.
Collapse
Affiliation(s)
- Mei Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Yinhao Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
29
|
Ultrasonic assisted reverse micelle synthesis of a novel Zn-metal organic framework as an efficient candidate for antimicrobial activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang J, Chen J, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102189. [PMID: 34825783 PMCID: PMC8787406 DOI: 10.1002/advs.202102189] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Indexed: 05/08/2023]
Abstract
Sustainable solutions on fabricating and using a face mask to block the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread during this coronavirus pandemic of 2019 (COVID-19) are required as society is directed by the World Health Organization (WHO) toward wearing it, resulting in an increasingly huge demand with over 4 000 000 000 masks used per day globally. Herein, various new mask technologies and advanced materials are reviewed to deal with critical shortages, cross-infection, and secondary transmission risk of masks. A number of countries have used cloth masks and 3D-printed masks as substitutes, whose filtration efficiencies can be improved by using nanofibers or mixing other polymers into them. Since 2020, researchers continue to improve the performance of masks by adding various functionalities, for example using metal nanoparticles and herbal extracts to inactivate pathogens, using graphene to make masks photothermal and superhydrophobic, and using triboelectric nanogenerator (TENG) to prolong mask lifetime. The recent advances in material technology have led to the development of antimicrobial coatings, which are introduced in this review. When incorporated into masks, these advanced materials and technologies can aid in the prevention of secondary transmission of the virus.
Collapse
Affiliation(s)
- Wei Deng
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Yajun Sun
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Xiaoxue Yao
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Karpagam Subramanian
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Chen Ling
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Hongbo Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
| | - Shauhrat S. Chopra
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| | - Ben Bin Xu
- Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Jie‐Xin Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Jian‐Feng Chen
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Dan Wang
- State Key Laboratory of Organic Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Honeyfer Amancio
- Department of Chemical Engineering and BiotechnologyCambridge UniversityCambridgeCB2 1TNUK
| | - Stevin Pramana
- School of EngineeringNewcastle UniversityNewcastle upon TyneNE1 7RUUK
| | - Ruquan Ye
- Department of ChemistryCity University of Hong KongHong Kong999077China
| | - Steven Wang
- Department of Mechanical EngineeringCity University of Hong KongHong Kong999077China
- School of Energy and EnvironmentCity University of Hong KongHong Kong999077China
| |
Collapse
|
31
|
Polash SA, Khare T, Kumar V, Shukla R. Prospects of Exploring the Metal-Organic Framework for Combating Antimicrobial Resistance. ACS APPLIED BIO MATERIALS 2021; 4:8060-8079. [PMID: 35005933 DOI: 10.1021/acsabm.1c00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Infectious diseases are a major public health concern globally. Infections caused by pathogens with resistance against commonly used antimicrobial drugs or antibiotics (known as antimicrobial resistance, AMR) are becoming extremely difficult to control. AMR has thus been declared as one of the top 10 global public health threats, as it has very limited solutions. The drying pipeline of effective antibiotics has further worsened the situation. There is no absolute treatment, and the limitations of existing methods warrant further development in antimicrobials. Recent developments in the nanomaterial field present them as promising therapeutics and effective alternative to conventional antibiotics and synthetic drugs. The metal-organic framework (MOF) is a recent addition to the antimicrobial category with superior properties. The MOF exerts antimicrobial action on a wide range of species and is highly biocompatible. Additionally, their porous structures allow the incorporation of biomolecules and drugs for synergistic antimicrobial action. This review provides an inclusive summary of the molecular events responsible for resistance development and current trends in antimicrobials to combat antibiotic resistance and explores the potential role of the MOF in tackling the drug-resistant microbial species.
Collapse
Affiliation(s)
- Shakil Ahmed Polash
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, India.,Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Ravi Shukla
- Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria 3001, Australia.,Centre for Advance Materials & Industrial Chemistry (CAMIC), RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
32
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Soltani S, Akhbari K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J Biol Inorg Chem 2021; 27:81-87. [PMID: 34716792 DOI: 10.1007/s00775-021-01912-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/29/2021] [Indexed: 01/31/2023]
Abstract
Antibacterial materials are an essential part of modern life and many efforts have been made to find a new and effective type of them. In this study, chlorhexidine (CHX) was loaded on Cu-BTC metal-organic framework (MOF), that both of them are known to have antibacterial properties. The antibacterial properties of Cu-BTC, CHX and CHX@Cu-BTC were investigated against Gram-positive and Gram-negative bacteria. Agar well-diffusion method and MIC test showed that CHX@Cu-BTC has high antibacterial activity. Characterization methods, such as FT-IR, XRD, N2 adsorption-desorption isotherm, TGA, SEM, EDX, TEM and zeta potential, were employed to characterize their structures. Cu-BTC MOF nanoparticles were synthesized and used as nanoporous carriers for chlorhexidine. The loading was about 10%, which was absorbed into the pores. Antibacterial activity was investigated against Gram-negative and Gram-positive bacteria by Agar well diffusion method and MIC (minimal inhibitory concentration) assay. The CHX@Cu-BTC had synergistic antibacterial activity of Cu-BTC and chlorhexidine.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
34
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol 2021; 48:161-196. [PMID: 34432563 DOI: 10.1080/1040841x.2021.1950120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.
Collapse
Affiliation(s)
| | - Renata Carolina Alves
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | | | - Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| |
Collapse
|
36
|
Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120381] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
38
|
Maqbool I, Rehman F, Soomro F, Bhatti Z, Ali U, Jatoi AH, Lal B, Iqbal M, Phulpoto S, Ali A, Thebo KH. Graphene‐based Materials for Fighting Coronavirus Disease 2019: Challenges and Opportunities. CHEMBIOENG REVIEWS 2021. [PMCID: PMC8250942 DOI: 10.1002/cben.202000039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is considered as serious global threat of this time and greatest challenge for recent days. Several approaches have been carried out in this direction to fight against COVID‐19. Among these, nanotechnology is one of the promising approach to face these challenges in the current situation. Recently, graphene‐based nanomaterials have been explored for COVID‐19 due to its unique physicochemical properties. This mini review provides a recent progress in graphene‐based nanomaterials and its applications for diagnosis, detection, decontamination, and protection against COVID‐19. Further, main challenges and perspective for fundamental design and development of technologies based on graphene‐based materials are discussed and suitable directions to improve these technologies are suggested. This article will provide timely knowledge and future direction about this wonder materials in various biological applications.
Collapse
Affiliation(s)
- Imran Maqbool
- The University of International Business and Economics (UIBE) School of International Trade and Economics Beijing China
| | - Faisal Rehman
- The Sukkur IBA University Department of Electrical Engineering Sukkur Sindh Pakistan
| | - Faheeda Soomro
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Science Karachi Pakistan
| | - Zubeda Bhatti
- Shah Abdul Latif University Department of Physics and Electronics 66020 Khairpur Mirs Pakistan
| | - Umeed Ali
- Shah Abdul Latif University Department of Physics and Electronics 66020 Khairpur Mirs Pakistan
| | - Ashique Hussain Jatoi
- Shaheed Benazir Bhutto University Department of Chemistry Shaheed Benazirabad Pakistan
| | - Bhajan Lal
- Shah Abdul Latif University Institute of Chemistry 66020 Khairpur Mirs Pakistan
| | - Muzaffar Iqbal
- The University of Haripur Kpk Department of Chemistry Faculty of Natural Science Haripur 22620 Pakistan
| | - Shahnawaz Phulpoto
- Shaheed Benazir Bhutto University Department of Chemistry Shaheed Benazirabad Pakistan
| | - Akbar Ali
- University of Chinese Academy of Sciences (UCAS) 100190 Beijing China
| | | |
Collapse
|
39
|
Li R, Chen T, Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS NANO 2021; 15:3808-3848. [PMID: 33629585 DOI: 10.1021/acsnano.0c09617] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To address the serious threat of bacterial infection to public health, great efforts have been devoted to the development of antimicrobial agents for inhibiting bacterial growth, preventing biofilm formation, and sterilization. Very recently, metal-organic frameworks (MOFs) have emerged as promising materials for various antimicrobial applications owing to their different functions including the controlled/stimulated decomposition of components with bactericidal activity, strong interactions with bacterial membranes, and formation of photogenerated reactive oxygen species (ROS) as well as high loading and sustained releasing capacities for other antimicrobial materials. This review focuses on recent advances in the design, synthesis, and antimicrobial applications of MOF-based materials, which are classified by their roles as component-releasing (metal ions, ligands, or both), photocatalytic, and chelation antimicrobial agents as well as carriers or/and synergistic antimicrobial agents of other functional materials (antibiotics, enzymes, metals/metal oxides, carbon materials, etc.). The constituents, fundamental antimicrobial mechanisms, and evaluation of antimicrobial activities of these materials are highlighted to present the design principles of efficient MOF-based antimicrobial materials. The prospects and challenges in this research field are proposed.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Tongtong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| |
Collapse
|
40
|
Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Wang X, Zhou X, Yang K, Li Q, Wan R, Hu G, Ye J, Zhang Y, He J, Gu H, Yang Y, Zhu L. Peroxidase- and UV-triggered oxidase mimetic activities of the UiO-66-NH 2/chitosan composite membrane for antibacterial properties. Biomater Sci 2021; 9:2647-2657. [PMID: 33595569 DOI: 10.1039/d0bm01960g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, UiO-66-NH2 metal-organic framework (MOF) nanoparticles with peroxidase and oxidase mimetic activities were incorporated into a chitosan (CS) matrix by a simple and environmentally friendly method. The UiO-66-NH2/CS composite membrane possesses the peroxidase mimicking activity in the presence of traces of H2O2, thus resulting in good antibacterial properties. Intriguingly, 30 min of UV pre-irradiation of the UiO-66-NH2/CS composite membrane, in the absence of H2O2, still leads to a good antibacterial activity. This was attributed to the oxidase mimetic activity and the peroxidase mimicking activity of UiO-66-NH2. In such a way, the side effects of direct exposure to UV irradiation and H2O2 can be avoided for wound-healing treatments. The antibacterial mechanism was further proved by antibacterial experiments, TMB·2HCl color development experiments, reactive oxygen species generation tests and electron spin resonance tests. As a potential medical antibacterial dressing, in vitro membranes were also investigated.
Collapse
Affiliation(s)
- Xiaojuan Wang
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tu Y, Lei C, Deng F, Chen Y, Wang Y, Zhang Z. Core–shell ZIF-8@polydopamine nanoparticles obtained by mitigating the polydopamine coating induced self-etching of MOFs: prototypical metal ion reservoirs for sticking to and killing bacteria. NEW J CHEM 2021. [DOI: 10.1039/d1nj00461a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ZIF-8@PDA nanoparticles can work as metal ion reservoirs that locally release metal ions to kill bacteria after sticking to them.
Collapse
Affiliation(s)
- Yingxue Tu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Caifen Lei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Fei Deng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Yiang Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Ying Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University
- Tianjin
- China
| |
Collapse
|
43
|
Vineeth VT, Divya R, Bijini BR, Deepa M, Suresh Kumar B, Rajendra Babu K. Growth and Characterisation of Copper Complex of 2, 4, 6-Trioxypyrimidine: A Novel Luminescent and Active Pharmaceutical Material in Metal Organic Framework. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Zhao W, Deng J, Ren Y, Xie L, Li W, Wang Q, Li S, Liu S. Antibacterial application and toxicity of metal-organic frameworks. Nanotoxicology 2020; 15:311-330. [PMID: 33259255 DOI: 10.1080/17435390.2020.1851420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-organic frameworks (MOFs), which are also referred to as coordination polymers, have been widely used in adsorption separation and catalysis, especially in the field of physical chemistry in the past few years, because of their unique physical structure and potential chemical properties. In recent years, particularly with the continuous expansion of the research field, deepening of research levels, and sustained advancements in science and technology, powerful and diverse MOFs that have demonstrated great biomedical application potential have been successively developed. Consequently, this study summarizes the origin, development, and common synthesis methods of MOFs, with major emphasis on their antibacterial application and safety evaluation in biomedicine.
Collapse
Affiliation(s)
- Wanling Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinqiong Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Chinthamreddy A, Karreddula R, Pitchika GK, SurendraBabu MS. Synthesis, Characterization of [Co(BDC)(Phen)H2O] and [Co(BDC)(DABCO)] MOFs, π..π Interactions, Hirshfeld Surface Analysis and Biological Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01800-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Aftab L, Iqbal N, Asghar A, Noor T. Synthesis, characterization and gas adsorption analysis of solvent dependent Zn-BTC metal organic frameworks. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1813176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Leena Aftab
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Naseem Iqbal
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U.S Pakistan Center for Advanced Studies in Energy (USPCAS-E, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
47
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
48
|
Tabatabaeian K, Simayee M, Fallah-Shojaie A, Mashayekhi F, Hadavi M. Novel MOF-based mixed-matrix membranes, N-CQDs@[Zn(HCOO)3][C2H8N]/PEG, as the effective antimicrobials. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01975-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Sacourbaravi R, Ansari-Asl Z, Kooti M, Nobakht V, Darabpour E. Fabrication of Ag NPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01601-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Rasheed T, Rizwan K, Bilal M, Iqbal HMN. Metal-Organic Framework-Based Engineered Materials-Fundamentals and Applications. Molecules 2020; 25:E1598. [PMID: 32244456 PMCID: PMC7180910 DOI: 10.3390/molecules25071598] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a fascinating class of porous crystalline materials constructed by organic ligands and inorganic connectors. Owing to their noteworthy catalytic chemistry, and matching or compatible coordination with numerous materials, MOFs offer potential applications in diverse fields such as catalysis, proton conduction, gas storage, drug delivery, sensing, separation and other related biotechnological and biomedical applications. Moreover, their designable structural topologies, high surface area, ultrahigh porosity, and tunable functionalities all make them excellent materials of interests for nanoscale applications. Herein, an effort has been to summarize the current advancement of MOF-based materials (i.e., pristine MOFs, MOF derivatives, or MOF composites) for electrocatalysis, photocatalysis, and biocatalysis. In the first part, we discussed the electrocatalytic behavior of various MOFs, such as oxidation and reduction candidates for different types of chemical reactions. The second section emphasizes on the photocatalytic performance of various MOFs as potential candidates for light-driven reactions, including photocatalytic degradation of various contaminants, CO2 reduction, and water splitting. Applications of MOFs-based porous materials in the biomedical sector, such as drug delivery, sensing and biosensing, antibacterial agents, and biomimetic systems for various biological species is discussed in the third part. Finally, the concluding points, challenges, and future prospects regarding MOFs or MOF-based materials for catalytic applications are also highlighted.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico
| |
Collapse
|