1
|
Feizpour S, Hosseini-Yazdi SA, Safarzadeh E, Baradaran B, Dusek M, Poupon M. A novel water-soluble thiosemicarbazone Schiff base ligand and its complexes as potential anticancer agents and cellular fluorescence imaging. J Biol Inorg Chem 2023:10.1007/s00775-023-02001-5. [PMID: 37129705 DOI: 10.1007/s00775-023-02001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
A novel fluorescent ligand (H2LCl⋅1.5CH3OH, 1) was synthesized and metal complexes of 1 with Mn(II), Fe(III), Ni(II), Cu(II), and Zn(II) were obtained as Mn(HL)2Cl2 (2), Fe(HL)2Cl3⋅3H2O (3), Ni(L)(HL)Cl⋅8H2O (4), Cu(HL)Cl2⋅4H2O (5), Zn(H2L)Cl3 (6), respectively. These compounds were identified by spectroscopic methods, elemental analysis, molar conductivity, and single-crystal X-ray crystallography. According to the crystal structure of 4 nickel (II), center is surrounded by two ligands in a distorted octahedral geometry. The ligand and its complexes are soluble in water and have excellent stability. In vitro anti-proliferative activity of these compounds was evaluated against human breast adenocarcinoma (MCF-7) and human lipo-sarcoma (SW-872) as cancer cells and human fibroblasts (HFF-2) as normal cells by MTT assay. Interestingly, complex 5 exhibited excellent activity against both cancer cells with low IC50 value 22.18 ± 0.35 μg/mL (35.66 ± 0.56 μM) for SW-872 and 79.41 ± 3.54 μg/mL (127.6 ± 5.69 μM) for MCF-7 among the compounds and in comparison with paclitaxel (PTX) which acts finely. Morphological changes were evaluated by flow cytometry that revealed apoptosis is the main cause of cell death. Likewise, cell cycle studies indicated the cell cycle arrest in the G1 and S phases for complex 5 against MCF-7 and SW-872 cancer cells, while complex 6 could arrest the MCF-7 and SW-872 cells in G2 and G1 phases, respectively. All of the compounds are fluorescent which enabled us to monitor the uptake and intracellular distribution in living human cancer cells by fluorescence microscopy.
Collapse
Affiliation(s)
- Sima Feizpour
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 51666-14766, Iran
| | | | - Elham Safarzadeh
- Department of Microbiology and Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| | - Morgane Poupon
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21, Prague 8, Czech Republic
| |
Collapse
|
2
|
Yang T, Zhang Z, Zhang J, Li Y, Li W, Liang H, Yang F. Developing a Gallium(III) Agent Based on the Properties of the Tumor Microenvironment and Lactoferrin: Achieving Two-Agent Co-delivery and Multi-targeted Combination Therapy of Cancer. J Med Chem 2023; 66:793-803. [PMID: 36544423 DOI: 10.1021/acs.jmedchem.2c01684] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To develop a next-generation anticancer metal-based drug, realize the multi-targeted combination therapy of protein drug and metal-based drug for cancer, solve their co-delivery challenges, and improve their in vivo targeting ability, we proposed to develop a multi-targeted anticancer metal-based agent exploiting the properties of the tumor microenvironment (TME) and of lactoferrin (LF). To this end, we optimized a series of gallium (Ga, III) isopropyl-2-pyridyl-ketone thiosemicarbazone compounds to obtain a Ga compound (C4) with remarkable cytotoxicity and then constructed a new LF-C4 nanoparticle (LF-C4 NP) delivery system. In vivo studies showed that LF-C4 NPs not only had a greater capacity for inhibiting tumor growth than LF or C4 alone but also solved the co-delivery problems of LF and C4 and improved their targeting ability. Furthermore, free C4 and LF-C4 NPs inhibited tumor growth through multiple synergistic actions on the TME: killing cancer cell, inhibiting tumor angiogenesis, and activating immune system.
Collapse
Affiliation(s)
- Tongfu Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Yanping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
3
|
Anjomshoa M, Sahihi M, Fatemi SJ, Shayegan S, Farsinejad A, Amirheidari B. In vitro biological and in silico molecular docking and ADME studies of a substituted triazine-coordinated cadmium(II) ion: efficient cytotoxicity, apoptosis, genotoxicity, and nuclease-like activity plus binding affinity towards apoptosis-related proteins. Biometals 2022; 35:549-572. [PMID: 35366135 DOI: 10.1007/s10534-022-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A cadmium(II) complex containing dppt ligand with the formula [CdCl2(dppt)2], where dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine was synthesized, elucidated and submitted to in vitro cytotoxicity studies against human breast (MCF-7), glioblastoma (U-87), and lung (A549) cancer cell lines as well as mouse embryo normal cell line (NIH/3T3), in comparison with cisplatin employing MTT assay over 24 and 48 h. The complex exhibited the highest cytotoxic effect against MCF-7 cells among the other three cell lines with IC50 values of 8.7 ± 0.5 (24 h) and 1.2 ± 0.7 µM (48 h). Significantly, flow cytometric assessment of the complex-treated MCF-7 and U-87 cells demonstrated a dose-dependent induced apoptotic cell death. The cellular morphological changes were in concord with cytotoxicity and flow cytometric results. The results of comet assay showed that the complex is able to induce DNA damage in MCF-7 cells. These observations are of importance, as sustained damage to cellular DNA could lead to apoptotic cell death. The results of DNA-binding studies indicated that the complex fits into the DNA minor groove and interacts with DNA via a partial intercalation. Moreover, the complex was able to efficiently cleave pUC19 DNA through a hydrolytic mechanism. The binding affinity between the complex and apoptosis-relevant protein targets including APAF1, Bax, Bcl-2, Cas3, Cas7, and Cas9 was evaluated through molecular docking studies. In silico virtual studies revealed the complex's strong affinity towards apoptosis-related proteins; therefore the complex can act as a potential apoptosis inducer. Physicochemical, pharmacokinetics, lipophilicity, drug-likeness, and medicinal chemistry properties of the complex were also predicted through in silico absorption, distribution, metabolism and excretion studies.
Collapse
Affiliation(s)
- Marzieh Anjomshoa
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Sahihi
- Roberval Laboratory, Université de Technologie de Compiègne, Alliance Sorbonne Université, Compiègne, France
| | | | - Shika Shayegan
- Department of Pharmacy, Eastern Mediterranean University, TRNC via Mersin 10, Famagusta, Turkey
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Lu J, Yuan M, Hu L, Yao H. Migration and Transformation of Multiple Heavy Metals in the Soil–Plant System of E-Waste Dismantling Site. Microorganisms 2022; 10:microorganisms10040725. [PMID: 35456776 PMCID: PMC9030041 DOI: 10.3390/microorganisms10040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
E-waste generation has become a major environmental issue worldwide. Heavy metals (HMs) in e-waste can be released during inappropriate recycling processes. While their pollution characteristics have been studied, the migration and transformation of different multi-metal fractions in soil–plant system of e-waste dismantling sites is still unclear. In this study, pot experiments were conducted to investigate the migration and transformation of different multi-metal fractions (Cu, Pb, Zn and Al) in the soil–plant system using two Chinese cabbage cultivars (heavy metals low-accumulated variety of Z1 and non-low-accumulated Z2) treated with or without biochar. The result showed that the acid-soluble fraction of Cu, Pb, Zn and Al in soil decreased by 5.5%, 55.7%, 7.8% and 21.3%, but the residual fraction (ResF) of them increased by 48.5%, 1.8%, 30.9% and 43.1%, respectively, when treated with biochar and plants, compared to that of the blank soil (CK). In addition, Pb mainly existed as a reducible fraction, whereas Cu existed as an oxidisable fraction. Biochar combined with plants significantly increased the ResF of multi-metals, which reduced the migration ability of Pb among all other metals. The relative amount of labelled 13C in the soil of Z1 was higher than that of Z2 (25.4 fold); among them, the Gram-negative bacteria (18-1ω9c, 18-1ω7c) and fungi (18-2ω6c) were significantly labelled in the Z1-treated soil, and have high correlation with HM migration and transformation. In addition, Gemmatimonadete were significantly positive in the acid-soluble fraction of HMs, whereas Ascomycota mostly contributed to the immobilisation of HMs. Therefore, the distribution of fractions rather than the heavy metal type plays an important role in the HM migration in the soil–plant system of e-waste dismantling sites.
Collapse
Affiliation(s)
- Jianming Lu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Correspondence: (M.Y.); (H.Y.)
| | - Lanfang Hu
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China;
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China;
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
5
|
Zhang H, Zhang R, Lu T, Qi W, Zhu Y, Lu M, Qi Z, Chen W. Enhanced transport of heavy metal ions by low-molecular-weight organic acids in saturated porous media: Link complex stability constants to heavy metal mobility. CHEMOSPHERE 2022; 290:133339. [PMID: 34929284 DOI: 10.1016/j.chemosphere.2021.133339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Environment-ubiquitous low-molecular-weight organic acids (LMWOAs) can interact with heavy metal ions and thus affect their mobility in subsurface aquifers. Herein, the effects of LMWOAs (including acetic acid, tartaric acid, malonic acid, oxalic acid, and citric acid) on the mobility of heavy metal ions (including Cd2+, Zn2+, Ni2+, Mn2+, and Co2+) in porous media were investigated to reveal the role of the stability constants of metal-LMWOA complexes in the mobility of heavy metal ions in porous media. The results showed that the mobility of different metal ions followed the order of Cd2+ < Zn2+ < Ni2+ < Mn2+ < Co2+ despite of LMWOAs-free or LMWOAs-addition. For each heavy metal, all the organic acids enhanced its transport by forming stable non-adsorbing metal-LMWOA complexes and the enhanced ability followed the order of citric acid > oxalic acid > malonic acid > tartaric acid > acetic acid. An interesting finding was that there was a significantly positive correlation between the enhanced abilities of LMWOAs to metal mobility and the complex stability constants (log K) (R2 = 0.801-0.961, p < 0.05), indicating that the complex stability of metal-LMWOA was the dominant factor responsible for the enhanced transport of heavy metal ions. Meanwhile, the linear slope indicated the intensity of enhancement of LMWOAs on heavy metal mobility was heavy metal type-dependent. This study proposed that the complex stability of metal-LMWOA could be an indicator to quantify and predict the impact of LMWOAs on the mobility of heavy metals.
Collapse
Affiliation(s)
- Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ruoyu Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Minghua Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
6
|
Synthesis, structural characterisation and antibacterial activities of lead(II) and some transition metal complexes derived from quinoline-2-carboxaldehyde 4-methyl-3-thiosemicarbazone. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Design, synthesis, antiproliferative activity, and cell cycle analysis of new thiosemicarbazone derivatives targeting ribonucleotide reductase. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
8
|
Chen R, Cheng Y, Wang P, Wang Q, Wan S, Huang S, Su R, Song Y, Wang Y. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143871. [PMID: 33293086 DOI: 10.1016/j.scitotenv.2020.143871] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Layer-structured graphene oxide excellent carrier for modifications; however, its poor recoverability and stability preclude its application in wastewater treatment fields. Herein, three-dimensional magnetic fungal hyphal/graphene oxide nanofibers (MFHGs) were assembled by a reductive self-assembly (RSA) strategy for the efficient capture of Co(II) and Ni(II) from high-salinity aqueous solution. The RSA strategy is inexpensive, eco-friendly and easy to scale up. The obtained MFHGs enhanced the dispersity and stability of graphene oxide and exhibited excellent magnetization and large coercivity, leading to satisfactory solid-liquid separation performance and denser sediment. The results of batch removal experiments showed that the maximum removal capacity of MFHGs for Ni(II) and Co(II) was 97.44 and 104.34 mg/g, respectively, in 2 g/L Na2SO4 aqueous solution with a pH of 6.0 at 323 K, and the effects of initial pH and ionic strength on Co(II) and Ni(II) removal were explored. Yield residue analysis indicated that the high porosity and oxygen-containing functional groups of MFHGs remarkably improved their Co(II)- and Ni(II)-removal capacities. According to the analysis, hydroxyl groups and amine groups participated in the chemical reaction of Co(II) and Ni(II) removal, and cation-exchange chemical adsorption was dominant during the Co(II)- and Ni(II)-removal process. Based on the attributes of MFHGs, a continuous-flow recycle reactor (CFRR) was proposed for emergency aqueous solution treatment and exhibited satisfactory removal efficiency and regeneration performance. The combination of MFHGs and the proposed CFRR is a promising water treatment strategy for rapid treatment applications.
Collapse
Affiliation(s)
- Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuying Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Si Wan
- Hunan Research Institute for Nonferrous Metals, Changsha 410100, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yuxia Song
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Wang J, Wang YT, Chang JN, Li MX. Two nickel (II) complexes of 2-acetylpyrazine thiosemicarbazones: Synthesis, crystal structures and biological evaluation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Wang Y, Zheng K, Zhan W, Huang L, Liu Y, Li T, Yang Z, Liao Q, Chen R, Zhang C, Wang Z. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111294. [PMID: 32931971 DOI: 10.1016/j.ecoenv.2020.111294] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination in soil has attracted great attention worldwide. In situ stabilization has been considered an effective way to remediate soils contaminated by heavy metals. In the present research, a multiple-modified biochar (BCM) was prepared to stabilize Cd and Cu contamination in two different soils: a farmland soil (JYS) and a vegetable soil (ZZS). The results showed that BCM was a porous-like flake material and that modification increased its specific surface area and surface functional groups. The incubation experiment indicated that BCM decreased diethylenetriaminepentaacetic (DTPA)-extractable Cd and Cu by 92.02% and 100.00% for JYS and 90.27% and 100.00% for ZZS, respectively. The toxicity characteristic leaching procedure (TCLP)-extractable Cd and Cu decreased 66.46% and 100.00% for JYS and 46.33% and 100.00% for ZZS, respectively. BCM also reduced the mobility of Cd and Cu in soil and transformed them to more stable fractions. In addition, the application of BCM significantly increased the soil dehydrogenase, organic matter content and available K (p < 0.05). These results indicate that BCM has great potential in the remediation of Cd- and Cu-contaminated soil.
Collapse
Affiliation(s)
- Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Kaixuan Zheng
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Luyu Huang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
| | - Yidan Liu
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Tao Li
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China; Henan Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Zhihui Yang
- School of Metallurgical & Environment, Central South University, Changsha, 410083, China
| | - Qi Liao
- School of Metallurgical & Environment, Central South University, Changsha, 410083, China
| | - Runhua Chen
- School of Metallurgical & Environment, Central South University, Changsha, 410083, China
| | - Chaosheng Zhang
- International Network for Environment and Health, School of Geography and Archaeology & Ryan Institute, National University of Ireland, Galway, Ireland
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
11
|
Ma X, Ren Q, Zhan W, Hu C, Zhao M, Tian Y, Liao Q, Yang Z, Wang Y. Effectively reducing the bioavailability and leachability of heavy metals in sediment and improving sediment properties with a low-cost composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45581-45590. [PMID: 32803576 DOI: 10.1007/s11356-020-10343-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal-contaminated sediment is a common environmental problem. In situ stabilization is an effective and low-cost method to remediate heavy metal-contaminated sediment. In this study, a red mud-based low-cost composite (RMM) was used to stabilize heavy metal-contaminated sediment. RMM was mixed with heavy metal-contaminated sediment at the doses of 0%, 1%, 3% and 5%. The CaCl2-extractable, DTPA-extractable, leachability (TCLP) and heavy metal fractions were analysed to evaluate the stabilization efficiency of RMM for heavy metals. The selected properties and microbial activities of the sediment were analysed to verify the safety of RMM to sediment. The results showed that RMM reduced the DTPA-, CaCl2- and TCLP-extractable heavy metals in sediment. At an RMM dose of 5%, DTPA-, CaCl2- and TCLP- extractable heavy metals were reduced by 7.60%, 72.34% and 69.24% for Pb; 18.20%, 76.7% and 23.57% for Cd; 32.7%, 96.50% and 49.64% for Zn; and 35.0%, 61.20% and 55.27% for Ni, respectively. TCLP- and DTPA-extractable Cu was reduced by 71.15% and 12.90%, respectively. In contrast, CaCl2-extractable Cu increased obviously after the application of RMM. RMM reduced the acid-soluble fraction of Zn by 6.99% and increased the residual fraction of Ni by 4.28%. However, the influence of RMM on the fractions of Pb, Cd and Cu was nonsignificant. In addition, the application of RMM increased the pH values of the sediment, and the microbial activity in the sediment was also obviously enhanced. These results indicated that RMM has great potential in the remediation of heavy metal-contaminated sediment.
Collapse
Affiliation(s)
- Xiaoyu Ma
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Qiang Ren
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Wenhao Zhan
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Chao Hu
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Mengke Zhao
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Yuan Tian
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Qi Liao
- School of Metallurgical & Environment, Central South University, Changsha, 410083, China
| | - Zhihui Yang
- School of Metallurgical & Environment, Central South University, Changsha, 410083, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Environment & Planning, Henan University, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control & Remediation of Soil Heavy Metals Pollution, Henan University, Kaifeng, 475004, China.
- Key Research Institute of Yellow River Civilization and Sustainable Development & Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
12
|
Qi J, Zhao W, Zheng Y, Wang R, Chen Q, Wang FA, Fan W, Gao H, Xia X. Single-crystal structure and intracellular localization of Zn(II)-thiosemicarbazone complex targeting mitochondrial apoptosis pathways. Bioorg Med Chem Lett 2020; 30:127340. [PMID: 32631541 DOI: 10.1016/j.bmcl.2020.127340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/17/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Tracking of drugs in cancer cells is important for basic biology research and therapeutic applications. Therefore, we designed and synthesised a Zn(II)-thiosemicarbazone complex with photoluminescent property for organelle-specific imaging and anti-cancer proliferation. The Zn(AP44eT)(NO3)2 coordination ratio of metal to ligand was 1:1, which was remarkably superior to 2-((3-aminopyridin-2-yl) methylene)-N, N-diethylhydrazinecarbothioamide (AP44eT·HCl) in many aspects, such as fluorescence and anti-tumour activity. Confocal fluorescence imaging showed that the Zn(AP44eT)(NO3)2 was aggregated in mitochondria. Moreover, Zn(AP44eT)(NO3)2 was more effective than the metal-free AP44eT·HCl in shortening the G2 phase in the MCF-7 cell cycle and promoting apoptosis of cancer cells. Supposedly, the effects of these complexes might be located mainly in the mitochondria and activated caspase-3 and 9 proteins.
Collapse
Affiliation(s)
- Jinxu Qi
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| | - Wei Zhao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Yunyun Zheng
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Ruiya Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Qiu Chen
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Fu-An Wang
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Weiwei Fan
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Huashan Gao
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China
| | - Xichao Xia
- Medcine College of Pingdingshan University, Pingdingshan, Henan 467000, China.
| |
Collapse
|
13
|
Chen L, Wang L, An W, Wang R, Tian L. Synthesis, structural characterization, and antibacterial activity of diorganotin complexes of Schiff base derived from 4-(diethylamino)salicylaldehyde and L-tyrosine. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1727515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Lexing Chen
- Key Laboratory of Natural Products and Pharmaceutical Intermediates, Qufu Normal University, Qufu, China
| | - Liping Wang
- Key Laboratory of Natural Products and Pharmaceutical Intermediates, Qufu Normal University, Qufu, China
| | - Wugai An
- Key Laboratory of Natural Products and Pharmaceutical Intermediates, Qufu Normal University, Qufu, China
| | - Ruili Wang
- Key Laboratory of Natural Products and Pharmaceutical Intermediates, Qufu Normal University, Qufu, China
| | - Laijin Tian
- Key Laboratory of Natural Products and Pharmaceutical Intermediates, Qufu Normal University, Qufu, China
| |
Collapse
|
14
|
Cis and trans- palladium (II) complexes derived from SNN amidrazone pincer ligand: Synthesis, crystal structures and biological evaluation. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Wang J, Wang YT, Fang Y, Lu YL, Li MX. Tin thiocarbonohydrazone complexes: synthesis, crystal structures and biological evaluation. Toxicol Res (Camb) 2019; 8:862-867. [PMID: 32206301 DOI: 10.1039/c9tx00109c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/27/2019] [Indexed: 12/25/2022] Open
Abstract
In this article, three organotin complexes formulated as [(Me)2Sn(H2L1)] (1), [(Ph)2Sn(H2L1)]·MeOH (2) and [(Me)2Sn(HL2)(OAc)]4(Me)2O (3) (H4L1 = bis(2-hydroxybenzaldehyde) thiocarbohydrazone and H2L2 = bis(2-acetylpyrazine) thiocarbonohydrazone) have been synthesized and structurally characterized. Growth inhibition assays indicated that both the proligands and the three complexes are capable of showing anticancer activity against the human hepatocellular carcinoma HepG2 cells with H2L2 and complex 3 showing much higher cytotoxic potential. Subsequent toxicity studies on normal QSG7701cells showed that complex 3 has the highest tumor cell selectivity, and its IC50 value on QSG7701 cells is 8.48 fold higher than that in HepG2 cells. In acute toxicity experiments, complex 3 produces a dose-dependent effect in NIH mice with a LD50 value of 17.2 mg kg-1.
Collapse
Affiliation(s)
- Jin Wang
- College of Life Science and Agronomy , Zhoukou Normal University , Zhoukou 466000 , Henan , P.R. China .
| | - Yu-Ting Wang
- College of Chemistry and Environment , Henan Institute of Finance and Banking , Zhengzhou , 450046 , Henan , P.R. China
| | - Yan Fang
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Yan-Li Lu
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| | - Ming-Xue Li
- Henan Key Laboratory of Polyoxometalates , Institute of Molecular and Crystal Engineering , College of Chemistry and Chemical Engineering , Henan University , Kaifeng 475004 , Henan , P.R. China .
| |
Collapse
|
16
|
Devi J, Devi S, Yadav J, Kumar A. Synthesis, Biological Activity and QSAR Studies of Organotin(IV) and Organosilicon(IV) Complexes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jai Devi
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Suman Devi
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Jyoti Yadav
- Department of ChemistryGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| | - Ashwani Kumar
- Department of Pharmaceutical SciencesGuru Jambheshwar University of Science and Technology Hisar-125001, Haryana India
| |
Collapse
|