Al‐Kelani M, Buthelezi N. Advancements in medical research: Exploring Fourier Transform Infrared (FTIR) spectroscopy for tissue, cell, and hair sample analysis.
Skin Res Technol 2024;
30:e13733. [PMID:
38887131 PMCID:
PMC11182784 DOI:
10.1111/srt.13733]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/24/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND
Fourier Transform Infrared (FTIR) spectroscopy has emerged as a powerful analytical tool in medical research, offering non-invasive and precise examination of the molecular composition of biological samples. The primary objective of this review is to underscore the benefits of FTIR spectroscopy in medicinal research, emphasizing its ability to delineate molecular fingerprints and assist in the identification of biochemical structures and key peaks in biological samples.
METHODS
This review comprehensively explores the diverse applications of FTIR spectroscopy in medical investigations, with a specific focus on its utility in analyzing tissue, cells, and hair samples. Various sources, including Google Scholar, PubMed, WorledCat and Scopus, were utilized to conduct this comprehensive literature review.
RESULTS
Recent advancements showcase the versatility of FTIR spectroscopy in elucidating cellular and molecular processes, facilitating disease diagnostics, and enabling treatment monitoring. Notably, FTIR spectroscopy has found significant utility in clinical assessment, particularly in screening counterfeit medicines, owing to its user-friendly operation and minimal sample preparation requirements. Furthermore, customs officials can leverage this technique for preliminary analysis of suspicious samples.
CONCLUSION
This review aims to bridge a gap in the literature and serve as a valuable resource for future research endeavors in FTIR spectroscopy within the medical domain. Additionally, it presents fundamental concepts of FTIR spectroscopy and spectral data interpretation, highlighting its utility as a tool for molecular analysis using Mid-Infrared (MIR) radiation.
Collapse