1
|
Zhao X, Niu Y, Zhao C, Li Z, Li K, Qin X. Simplified Synthesis of Poly(ethyleneimine)-Modified Silica Particles and Their Application in Oligosaccharide Isolation Methods. Int J Mol Sci 2024; 25:9465. [PMID: 39273411 PMCID: PMC11395661 DOI: 10.3390/ijms25179465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported.
Collapse
Affiliation(s)
- Xingyun Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Yifan Niu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Chengxiao Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
2
|
Chen Y, Wu Y, Li J, Deng C, Sun N. Resol/triblock copolymer composite-guided smart fabrication of carbonized mesopores for efficiently decoding exosomal glycans. Mikrochim Acta 2023; 190:319. [PMID: 37490179 DOI: 10.1007/s00604-023-05885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023]
Abstract
Soft-template carbonized mesopores were developed for the purpose of enriching urinary exosomal glycans through organic-organic self-assembly using block copolymers and resol precursors. With a high surface area of 229 m2 g-1, a small pore size of 3.1 nm, and a significant amount of carbon that specifically interacts with oligosaccharides in glycans, this carbonized mesopore material exhibits high selectivity and low limits of detection (5 ng μL-1) towards glycans. Our analysis of complex urine samples from healthy volunteers and bladder carcinoma patients successfully profiled 48 and 56 exosomal glycans, respectively, and 16 of them were significantly changed. Moreover, one upregulated bisecting N-acetylglucosamine (GlcNAc)-type glycan with core fucose, two upregulated and two downregulated terminal-sialylated glycans were revealed to be linked to bladder carcinoma. This approach is of significant importance for understanding diseases that arise from protein glycosylation mutations, and it may contribute to the development of novel diagnostic and therapeutic strategies for bladder carcinoma.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yonglei Wu
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Jiaomei Li
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| | - Nianrong Sun
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Chen Y, Deng C, Sun N. A protocol of carbonized on-column enrichment for urinary exosomal N-glycans profiling. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123586. [PMID: 36592588 DOI: 10.1016/j.jchromb.2022.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
As a widely present vesicle, exosome plays an important role in lots of biological processes due to its inclusive cargos. In particular, exosome glycan cargo is attracting attentions since its aberrant alteration is closely related to many progressions in diseases. In this work, a novel carbonized packing capillary trap column for urinary exosomal N-glycan enrichment was proposed. The carbonized packing exhibited large specific surface area, mesoporous structure with narrow pore size distribution and abundant carbon for specially interacting with oligosaccharides. Benefitting from all these advantages, the N-glycans deriving from standard glycoproteins or complex human urine exosomes could be identified with high sensitivity and selectivity. Finally, from the glycans identified in healthy volunteers and patients with bladder carcinoma, we observed that 10 of glycans shared by two groups were obvious downregulation and the 18 were upregulation. These results show great potential of capillary trap column as a tool for the enrichment and detection of glycans in exosomal, attracting more attention on disease progression monitoring and biomarker discovery.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| | - Nianrong Sun
- Department of Chemistry, Institutes of Biomedical Sciences, and Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
5
|
Wang Y, Wang J, Li J, Ling Y, Jia Y, Yang Y, Liu X, Zhang X, Zhou Y. Synergistic integration of FeNi magnetic nanoparticles with graphene-based porous carbon for efficient capture of N-linked glycans. NANOSCALE 2020; 12:24188-24195. [PMID: 33289761 DOI: 10.1039/d0nr05401a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing functional porous carbon is greatly desired for the capture of N-glycans from complex bio-samples. In this work, ferronickel graphene-based porous carbon composites (FeNi-G/PC-T, T = carbonization temperature) are facilely prepared and are characterized by the synergistic integration of magnetic separation, porosity and polar interaction. Studies of capture of N-linked glycans reveal that FeNi-G/PC-800 shows a remarkable performance to enrich N-linked glycans from standard bio-samples and real human serum, resulting in the successful profiling of 48 N-linked glycans in 5 μL human serum. Structure-property relationship studies further demonstrate that the synergistically integrated FeNi nanoparticles and graphene-based porous carbon in FeNi-G/PC-800 should play a key role in the capture performance.
Collapse
Affiliation(s)
- Yang Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200438, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Saneifar H, Bélanger D. Synthesis and characterization of aryl substituted functionalized graphene sheets and their electrochemical behavior. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|