1
|
Abstract
Luminogens with aggregation-induced emission (AIEgens) properties have numerous broad applications in fields of chemical and biological analyses due to their exceptional photostability, excellent signal reliability, high quantum yield, and large Stokes' shift. In particular, AIEgens also bring new blood for immunoassay. Since publication of the first 2004 paper, AIEgens-based immunoassays have received significant attention because of their high sensitivity, specificity, accuracy, and reliability. However, until now, there have been no comprehensive literature reviews focused on the evolving field of AIEgens-based immunoassays. Thus, we have extensively reviewed AIEgens-based immunoassays from their basic working principles to specific applications. We focus on several fundamental elements of AIEgens-based immunoassays, including the typical structures of AIEgens, emission mechanism of AIEgens probes, function of AIEgens in immunoassays, and platform of AIEgens-based immunoassays. Then, the representative applications of AIEgens-based immunoassays in food safety, medical diagnostics, and environmental monitoring are explored. Thus, proposals on how to further improve the AIEgens-based immunoassay performance are also discussed, as well as future challenges and perspectives, aiming to provide brief and valid guidelines for choosing suitable AIEgens-based immunoassays according to specific application requirements.
Collapse
Affiliation(s)
- Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qing Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Yuan J, Dong S, Hao J. Fluorescent assemblies: Synergistic of amphiphilic molecules and fluorescent elements. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Nawaz MAH, Akhtar MH, Ren J, Akhtar N, Hayat A, Yu C. Black phosphorus nanosheets/poly(allylamine hydrochloride) based electrochemical immunosensor for the selective detection of human epididymis protein 4. NANOTECHNOLOGY 2022; 33:485502. [PMID: 35998539 DOI: 10.1088/1361-6528/ac8bd8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, an electrochemical immunosensor based on black phosphorus nanosheets (BPNS)/poly(allylamine hydrochloride) (PAH) nanocomposite modified glassy carbon electrode was developed for the detection of ovarian cancer biomarker HE4. PAH has been applied to retain BPNS in its original honeycomb structure and to anchor biomolecules electrostatically on the transducer surface. The as synthesized nanocomposite was characterized by zeta potential analysis, scanning electron microscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy. Subsequently, the performance of the electrochemical immunosensor was evaluated through cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Under the optimal condition, the developed electrochemical immunosensor permitted to detect HE4 with a linear range of 0.1-300 ng ml-1and a detection limit of 0.01 ng ml-1. The developed sensor exhibited good selectivity and specificity to HE4 with negligible interference effect from common biomolecules like bovine serum albumin, lysozyme, protamine, glucose, fructose, hemoglobin and fetal bovine serum. Further, practical application of developed electrochemical immunosensor was demonstrated in spiked human serum which showed satisfactory recovery percentages.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Mahmood Hassan Akhtar
- Department of Chemistry, National University of Technology (NUTech) IJP Road, Islamabad, Pakistan
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Naeem Akhtar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
4
|
Duan Y, Liu Y, Han H, Zhang X, Zhang M, Liao Y, Han T. A donor-π-acceptor aggregation-induced emission compound serving as a portable fluorescent sensor for detection and differentiation of methanol and ethanol in the gas phase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119515. [PMID: 33578122 DOI: 10.1016/j.saa.2021.119515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The design strategy of aggregation-induced emission (AIE) fluorophores with donor-π-acceptor (D-π-A) conjugation structure has greatly contributed to the development of luminescent materials and devices, including volatile organic compounds (VOCs) sensors. In this work, a D-π-A fluorophore DEBAB was synthesized, showing both AIE and intramolecular charge transfer (ICT) properties as confirmed by spectroscopic data and quantum chemical calculations. Furthermore, there is notable emission-enhancement when DEBAB is exposed to small-molecule alcohols, such as methanol and ethanol. Based on this phenomenon, a portable film sensor was fabricated, capable of detecting methanol and ethanol in gas phase, with detection limit (DL) as low as 8.02 ppm. Our systematic investigation suggests that hydrogen-bonding may be formed between DEBAB and alcohols, intensifying the AIE efficacy while influencing the ICT process. This working mechanism is supported by density functional theory (DFT) calculations including electrostatic potential mapping and molecular total energy. In addition, a sensor array was fabricated on a cellulose paper strip, showing different levels of emission changing in response to alcohols. Thus the detection and differentiation of methanol and ethanol are enabled.
Collapse
Affiliation(s)
- Yuai Duan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yang Liu
- Beijing Key Laboratory of Radiation Advanced Materials, Beijing Research Center for Radiation Application, Beijing 100015, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xunxue Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Mengyao Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yi Liao
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Tianyu Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
5
|
Nawaz MAH, Meng L, Zhou H, Ren J, Shahzad SA, Hayat A, Yu C. Tetraphenylethene probe based fluorescent silica nanoparticles for the selective detection of nitroaromatic explosives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:825-831. [PMID: 33502411 DOI: 10.1039/d0ay01945c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A simple and sensitive fluorometric method is developed utilizing aggregation-induced emission probe based silica nanoparticles for the detection of nitroaromatic explosives. A positively charged tetraphenylethene based probe (TPE-C2-2+) is doped into silica nanoparticles exploiting electrostatic interactions to produce TPE-SiO2 nanoparticles with a uniform particle size. The TPE-SiO2 nanoparticles exhibit strong fluorescence emission due to the aggregation-induced emission (AIE) effect of the doped TPE probe. The fluorescence emission of TPE-SiO2 offers quantitative and sensitive response to picric acid (PA), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) which are used as model examples of nitroaromatic compounds. The fluorescence spectroscopy results show that the fluorescence emission of TPE-SiO2 was greatly quenched in the presence of the electron-poor nitroaromatic compounds due to the inner filter effect (IFE) and possibly the contact quenching mechanism. TPE-SiO2 nanoparticles show better sensitivity towards PA and could detect PA down to 0.01 μM with a linear detection range of 0.1-50 μM. The increased chemical stability, efficient high sensitivity and simple synthesis of the TPE-SiO2 nanoparticles demonstrate that they can be used as an excellent fluorescent probe for a wide range of electron-poor compounds, i.e. nitroaromatic compounds. Interference studies show that common interfering species with nitroexplosives such as acids, bases, volatile organic compounds, and salt solutions have a negligible effect during the sensing process.
Collapse
Affiliation(s)
- Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Zhang N, Shen Y, Pang G, Chu S, Han W, Mei Q, Hu X, Dong F, Shen Y, Zhao T. Ratiometric fluorescent nanosensor for dosage-sensitive visual discrimination of glucose based on electron transfer mechanism. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|