1
|
Dong Y, Wang Y, He D, Wang T, Zeng J, Wang J. Nearfield observation of spin-orbit interactions at nanoscale using photoinduced force microscopy. SCIENCE ADVANCES 2024; 10:eadp8460. [PMID: 39705359 DOI: 10.1126/sciadv.adp8460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Optical spin and orbital angular momenta are intrinsic characteristics of light determined by its polarization and spatial degrees of freedom, respectively. At the nanoscale, sharply focused structured light carries coupled spin-orbital angular momenta with complex 3D nearfield structures, crucial for manipulating multidimensional information of light in nanophotonics. However, characterizing these interactions faces challenges with conventional farfield-based methods, which typically lack the essential accuracy and resolution to interrogate the structured nearfield with high fidelity. To address this challenge, we experimentally observe spin-orbit interactions at the nanoscale using photoinduced force microscopy. Such interactions are enabled through sharply focused circularly polarized optical vortices, which are then mapped by nearfield optical forces in high resolution. Because the optical forces can reveal both longitudinal and transverse nearfield structures with high fidelity, the spin-orbit interactions are eventually evaluated quantitatively at the nearfield, as an important inspiration to use the coupled momenta in dense optical nano-device systems.
Collapse
Affiliation(s)
- Yajuan Dong
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Yu Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Dengji He
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Jinwei Zeng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Optics Valley Laboratory, Wuhan 430074, Hubei, China
| |
Collapse
|
2
|
Drinkard K, Barr JR, Kalb SR. Mass Spectrometric Detection and Differentiation of Enzymatically Active Abrin and Ricin Combined with a Novel Affinity Enrichment Technique. Chem Res Toxicol 2024; 37:1218-1228. [PMID: 38963334 PMCID: PMC11256886 DOI: 10.1021/acs.chemrestox.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Abrin and ricin are toxic proteins produced by plants. Both proteins are composed of two subunits, an A-chain and a B-chain. The A-chain is responsible for the enzymatic activity, which causes toxicity. The B-chain binds to glycoproteins on the cell surface to direct the A-chain to its target. Both toxins depurinate 28S rRNA, making it impossible to differentiate these toxins based on only their enzymatic activity. We developed an analytical workflow for both ricin and abrin using a single method and sample. We have developed a novel affinity enrichment technique based on the ability of the B-chain to bind a glycoprotein, asialofetuin. After the toxin is extracted with asialofetuin-coated magnetic beads, an RNA substrate is added. Then, depurination is detected by a benchtop matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometer to determine the presence or absence of an active toxin. Next, the beads are subjected to tryptic digest. Toxin fingerprinting is done on a benchtop MALDI-TOF MS. We validated the assay through sensitivity and specificity studies and determined the limit of detection for each toxin as nanogram level for enzymatic activity and μg level for toxin fingerprinting. We examined potential cross-reactivity from proteins that are near neighbors of the toxins and examined potential false results in the presence of white powders.
Collapse
Affiliation(s)
- Kaitlyn
K. Drinkard
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - John R. Barr
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| | - Suzanne R. Kalb
- National Center for Environmental Health,
Division of Laboratory Sciences, Centers
for Disease Control and Prevention, Atlanta, Georgia 30341, United States
| |
Collapse
|
3
|
Chen Y, Liu J, Song T, Zou X, Li L, Nie Q, Zhang P. Gaps in forensic toxicological analysis: The veiled abrin. Toxicon 2024; 242:107684. [PMID: 38513827 DOI: 10.1016/j.toxicon.2024.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Abrus precatorius is an herbaceous, flowering plant that is widely distributed in tropical and subtropical regions. Its toxic component, known as abrin, is classified as one of the potentially significant biological warfare agents and bioterrorism tools due to its high toxicity. Abrin poisoning can be utilized to cause accidents, suicides, and homicides, which necessitates attention from clinicians and forensic scientists. Although a few studies have recently identified the toxicological and pharmacological mechanisms of abrin, the exact mechanism remains unclear. Furthermore, the clinical symptoms and pathological changes induced by abrin poisoning have not been fully characterized, and there is a lack of standardized methods for identifying biological samples of the toxin. Therefore, there is an urgent need for further toxicopathologic studies and the development of detection methods for abrin in the field of forensic medicine. This review provides an overview of the clinical symptoms, pathological changes, metabolic changes, toxicologic mechanisms, and detection methods of abrin poisoning from the perspective of forensic toxicology. Additionally, the evidence on abrin in the field of forensic toxicology and forensic pathology is discussed. Overall, this review serves as a reference for understanding the toxicological mechanism of abrin, highlighting the clinical applications of the toxin, and aiding in the diagnosis and forensic identification of toxin poisoning.
Collapse
Affiliation(s)
- Yinyu Chen
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Jiaqi Liu
- Department of Neurology, the First Affiliated Hospital, International School of Public Health and One Health, Hainan Medical University, Haikou, 570102, China
| | - Tao Song
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Xing Zou
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Leilei Li
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China
| | - Qianyun Nie
- Department of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, 571199, China; Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Provincial Academician Workstation (tropical forensic medicine), Hainan Provincial Tropical Forensic Engineering Research Center, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
4
|
Zheng S, Du F, Zheng L, Han D, Li Q, Shi J, Chen J, Shi X, Huang H, Luo Y, Yang Y, O'Reilly P, Wei L, de Souza N, Hong L, Qian X. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 2023; 382:1020-1026. [PMID: 38033074 DOI: 10.1126/science.adi7812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The electrocaloric effect demands the maximized degree of freedom (DOF) of polar domains and the lowest energy barrier to facilitate the transition of polarization. However, optimization of the DOF and energy barrier-including domain size, crystallinity, multiconformation coexistence, polar correlation, and other factors in bulk ferroelectrics-has reached a limit. We used organic crystal dimethylhexynediol (DMHD) as a three-dimensional sacrificial master to assemble polar conformations at the heterogeneous interface in poly(vinylidene fluoride)-based terpolymer. DMHD was evaporated, and the epitaxy-like process induced an ultrafinely distributed, multiconformation-coexisting polar interface exhibiting a giant conformational entropy. Under a low electric field, the interface-augmented terpolymer had a high entropy change of 100 J/(kg·K). This interface polarization strategy is generally applicable to dielectric capacitors, supercapacitors, and other related applications.
Collapse
Affiliation(s)
- Shanyu Zheng
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feihong Du
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lirong Zheng
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Donglin Han
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Li
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junye Shi
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Chen
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoming Shi
- School of Materials Science and Engineering and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Houbing Huang
- School of Materials Science and Engineering and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yaorong Luo
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
| | | | - Linlin Wei
- Bruker (Beijing) Scientific Technology, Beijing 100192, China
| | - Nicolas de Souza
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, NSW 2232, Australia
| | - Liang Hong
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai National Center for Applied Mathematics (SJTU Center) and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshi Qian
- State Key Laboratory of Mechanical System and Vibration, Interdisciplinary Research Center, Institute of Refrigeration and Cryogenics, and MOE Key Laboratory for Power Machinery and Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University ZhongGuanCun Research Institute, Liyang 213300, China
| |
Collapse
|
5
|
Ji B, Huang J, Zou K, Liu M, Pei Y, Huang J, Wang Y, Wang J, Zhou R, Xin W, Song J. Direct Visualization of the Dynamic Process of Epsilon Toxin on Hemolysis. SMALL METHODS 2023:e2300028. [PMID: 37116083 DOI: 10.1002/smtd.202300028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Hemolysis is the process of rupturing erythrocytes (red blood cells) by forming nanopores on their membranes using hemolysins, which then impede membrane permeability. However, the self-assembly process before the state of transmembrane pores and underlying mechanisms of conformational change are not fully understood. In this work, theoretical and experimental evidence of the pre-pore morphology of Clostridium perfringens epsilon toxin (ETX), a typical hemolysin, is provided using in situ atomic force microscopy (AFM) complemented by molecular dynamics (MD) simulations to detect the conformational distribution of different states in Mica. The AFM suggests that the ETX pore is formed in two stages: ETX monomers first attach to the membrane and form a pre-pore in no special conditions required, which then undergo a conformational change to form a transmembrane pore at temperatures above the critical point in the presence of receptors. The authors' MD simulations reveal that initial nucleation occurs when specific amino acids adsorb to negatively charged mica cavities. This work fills the knowledge gap in understanding the early stage of hemolysis and the oligomerization of hemolysins. Moreover, the newly identified pre-pore of ETX holds promise as a candidate for nanopore applications.
Collapse
Affiliation(s)
- Bin Ji
- Department of Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Kexuan Zou
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meijun Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yufeng Pei
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Yong Wang
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
6
|
Wang H, Lee D, Wei L. Toward the Next Frontiers of Vibrational Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:3-17. [PMID: 37122829 PMCID: PMC10131268 DOI: 10.1021/cbmi.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Chemical imaging based on vibrational contrasts can extract molecular information entangled in complex biological systems. To this end, nonlinear Raman scattering microscopy, mid-infrared photothermal (MIP) microscopy, and atomic force microscopy (AFM)-based force-detected photothermal microscopies are emerging with better chemical sensitivity, molecular specificity, and spatial resolution than conventional vibrational methods. Their utilization in bioimaging applications has provided biological knowledge in unprecedented detail. This Perspective outlines key methodological developments, bioimaging applications, and recent technical innovations of the three techniques. Representative biological demonstrations are also highlighted to exemplify the unique advantages of obtaining vibrational contrasts. With years of effort, these three methods compose an expanding vibrational bioimaging toolbox to tackle specific bioimaging needs, benefiting many biological investigations with rich information in both label-free and labeling manners. Each technique will be discussed and compared in the outlook, leading to possible future directions to accommodate growing needs in vibrational bioimaging.
Collapse
Affiliation(s)
- Haomin Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dongkwan Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
8
|
Xia F, Youcef-Toumi K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. BIOSENSORS 2022; 12:1116. [PMID: 36551083 PMCID: PMC9775674 DOI: 10.3390/bios12121116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Visualization of biomedical samples in their native environments at the microscopic scale is crucial for studying fundamental principles and discovering biomedical systems with complex interaction. The study of dynamic biological processes requires a microscope system with multiple modalities, high spatial/temporal resolution, large imaging ranges, versatile imaging environments and ideally in-situ manipulation capabilities. Recent development of new Atomic Force Microscopy (AFM) capabilities has made it such a powerful tool for biological and biomedical research. This review introduces novel AFM functionalities including high-speed imaging for dynamic process visualization, mechanobiology with force spectroscopy, molecular species characterization, and AFM nano-manipulation. These capabilities enable many new possibilities for novel scientific research and allow scientists to observe and explore processes at the nanoscale like never before. Selected application examples from recent studies are provided to demonstrate the effectiveness of these AFM techniques.
Collapse
|
9
|
Li CY, Lv SW, Yang L, Wang J, Liu JM, Wang S. Facile preparation of uniform-sized covalent organic framework nanoflowers as versatile sample-pretreatment platforms for sensitive and specific determination of hazardous substances. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129566. [PMID: 35999751 DOI: 10.1016/j.jhazmat.2022.129566] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Covalent-organic frameworks (COFs) have lately received extensive interest for their outstanding performance, especially to adsorption of hazards, while easy-preparation of uniform-sized COFs hold a great challenge. This research presented a simple synthesis method of flower-shaped COF (nanoflower) with strong hydrophobic surface at room temperature. Taking advantage of its easy-prepared and uniform-sized features, we proposed a versatile and efficient sample-pretreatment platform by employing the nanoflower COF for affinity adsorption of various hydrophobic biotoxins and further surface imprinting for selective enrichment of specific biotoxin (COF@MIP), respectively. The COF@MIP was integrating COF with molecular imprinting technique to achieve selective identification of sterigmatocystin (ST) with high specificity and sensitivity. They both exhibited well reusability, preserving 81% of initial activity after being used for six cycles. The as-prepared materials coupled with offline solid phase extraction (SPE) and high performance liquid chromatography (HPLC) were successfully applied to five common cereals with good recoveries in the range of 70.3-100.7%. Moreover, the principle of versatile sample pretreatment and detection platform based on the facile-prepared and uniform-sized COF nanoflower would be easily extended to other hazards. It provided a prospective approach for the pretreatment and determination of hazardous substances with low level in complex sample matrix.
Collapse
Affiliation(s)
- Chun-Yang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shi-Wen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Menta R, Rosso G, Canzoneri F. Plant-Based: A Perspective on Nutritional and Technological Issues. Are We Ready for "Precision Processing"? Front Nutr 2022; 9:878926. [PMID: 35571909 PMCID: PMC9094677 DOI: 10.3389/fnut.2022.878926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid evolution of consumers' preference despite being still rooted in taste is rapidly combining with an exponential growth of environmental awareness. Both are forcing innovation into the food industry sector. Today, it is common in the scientific literature to find awareness of nutrition and sustainability, functionality and freshness, taste, and pollution; the most relevant and recognized trends are evolving with unprecedent speed toward a new paradigm. The perfect storm of fast-growing population, together with an exploding level of environmental pollution, is combining with the request for functional foods with more defined health properties and is strongly pushing the food sector to new defined innovation objectives to keep and develop the economic role of most loved brands around the world. The most debated conundrum is how to provide healthy food for all human beings, without further affecting our Mother Earth. Innovation in food raw materials as well as innovation in food processing seems to be the magic solution to provide twice with half, that is, to double the food production combined with declining resources. One of the fastest growing segments in the food industry is the plant-based segment. The status of the available options in food processing applied to plant-based food will be discussed, with a special focus on novel physical processing technologies and atomic force microscopy as possible complementary weapons in science-based definition of a sustainable nutrition approach. A call for a new paradigm such as "precision processing" should be adopted to drive the evolution of the whole food system.
Collapse
|
11
|
Su Z, Li T, Wu D, Wu Y, Li G. Recent Progress on Single-Molecule Detection Technologies for Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:458-469. [PMID: 34985271 DOI: 10.1021/acs.jafc.1c06808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid and sensitive detection technologies for food contaminants play vital roles in food safety. Due to the complexity of the food matrix and the trace amount distribution, traditional methods often suffer from unsatisfying accuracy, sensitivity, or specificity. In past decades, single-molecule detection (SMD) has emerged as a way to realize the rapid and ultrasensitive measurement with low sample consumption, showing a great potential in food contaminants detection. For instance, based on the nanopore technique, simple and effective methods for single-molecule analysis of food contaminants have been developed. To our knowledge, there has been a rare review that focuses on SMD techniques for food safety. The present review attempts to cover some typical SMD methods in food safety, including electrochemistry, optical spectrum, and atom force microscopy. Then, recent applications of these techniques for detecting food contaminants such as biotoxins, pesticides, heavy metals, and illegal additives are reviewed. Finally, existing research challenges and future trends of SMD in food safety are also tentatively proposed.
Collapse
Affiliation(s)
- Zhuoqun Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tong Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Wang H, Xie Q, Xu XG. Super-resolution mid-infrared spectro-microscopy of biological applications through tapping mode and peak force tapping mode atomic force microscope. Adv Drug Deliv Rev 2022; 180:114080. [PMID: 34906646 DOI: 10.1016/j.addr.2021.114080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022]
Abstract
Small biomolecules at the subcellular level are building blocks for the manifestation of complex biological activities. However, non-intrusive in situ investigation of biological systems has been long daunted by the low spatial resolution and poor sensitivity of conventional light microscopies. Traditional infrared (IR) spectro-microscopy can enable label-free visualization of chemical bonds without extrinsic labeling but is still bound by Abbe's diffraction limit. This review article introduces a way to bypass the optical diffraction limit and improve the sensitivity for mid-IR methods - using tip-enhanced light nearfield in atomic force microscopy (AFM) operated in tapping and peak force tapping modes. Working principles of well-established scattering-type scanning near-field optical microscopy (s-SNOM) and two relatively new techniques, namely, photo-induced force microscopy (PiFM) and peak force infrared (PFIR) microscopy, will be briefly presented. With ∼ 10-20 nm spatial resolution and monolayer sensitivity, their recent applications in revealing nanoscale chemical heterogeneities in a wide range of biological systems, including biomolecules, cells, tissues, and biomaterials, will be reviewed and discussed. We also envision several future improvements of AFM-based tapping and peak force tapping mode nano-IR methods that permit them to better serve as a versatile platform for uncovering biological mechanisms at the fundamental level.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
13
|
Zhou X, Zheng Y, Lv Q, Kong D, Ji B, Han X, Zhou D, Sun Z, Zhu L, Liu P, Jiang H, Jiang Y. Staphylococcus aureus N-terminus formylated δ-toxin tends to form amyloid fibrils, while the deformylated δ-toxin tends to form functional oligomer complexes. Virulence 2021; 12:1418-1437. [PMID: 34028320 PMCID: PMC8158037 DOI: 10.1080/21505594.2021.1928395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022] Open
Abstract
The community-associated Methicillin-resistant Staphylococcus aureus strain (CA-MRSA) is highly virulent and has become a major focus of public health professionals. Phenol-soluble modulins (PSM) are key factors in its increased virulence. δ-Toxin belongs to PSM family and has copious secretion in many S. aureus strains. In addition, δ-toxin exists in the S. aureus culture supernatant as both N-terminus formylated δ-toxin (fδ-toxin) and deformylated δ-toxin (dfδ-toxin) groups. Although δ-toxin has been studied for more than 70 years, its functions remain unclear. We isolated and purified PSMs from the supernatant of S. aureus MW2, and found fibrils and oligomers aggregates by Size Exclusion Chromatography. After analyzing PSM aggregates and using peptide simulations, we found that the difference in the monomer structure of fδ-toxin and dfδ-toxin might ultimately lead to differences in the aggregation ability: fδ-toxin and dfδ-toxin tend to form fibrils and oligomers respectively. Of note, we found that fδ-toxin fibrils enhanced the stability of biofilms, while dfδ-toxin oligomers promoted their dispersal. Additionally, oligomeric dfδ-toxin combined with PSMα to form a complex with enhanced functionality. Due to the different aggregation capabilities and functions of fδ-toxin and dfδ-toxin, we speculate that they may be involved in the regulation of physiological activities of S. aureus. Moreover, the dfδ-toxin oligomer not only provides a new form of complex in the study of PSMα, but also has significance as a reference in oligomer research pertaining to some human amyloid diseases.
Collapse
Affiliation(s)
- Xinyu Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuling Zheng
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Qingyu Lv
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Decong Kong
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Bin Ji
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuelian Han
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zeyu Sun
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Peng Liu
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Hua Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongqiang Jiang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
14
|
Using a low correlation high orthogonality feature set and machine learning methods to identify plant pentatricopeptide repeat coding gene/protein. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.02.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Obeid S, Guyomarc'h F. Atomic force microscopy of food assembly: Structural and mechanical insights at the nanoscale and potential opportunities from other fields. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|