1
|
Pedrosa VA, Chen K, George TJ, Fan ZH. Gold Nanoparticle-Based Microfluidic Chips for Capture and Detection of Circulating Tumor Cells. BIOSENSORS 2023; 13:706. [PMID: 37504105 PMCID: PMC10377447 DOI: 10.3390/bios13070706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
Liquid biopsy has progressed to its current use to diagnose and monitor cancer. Despite the recent advances in investigating cancer detection and diagnosis strategies, there is still a room for improvements in capturing CTCs. We developed an efficient CTC detection system by integrating gold nanoparticles with a microfluidic platform, which can achieve CTC capture within 120 min. Here, we report our development of a simple and effective way to isolate CTCs using antibodies attached on gold nanoparticles to the surface of a lateral filter array (LFA) microdevice. Our method was optimized using three pancreatic tumor cell lines, enabling the capture with high efficiency (90% ± 3.2%). The platform was further demonstrated for isolating CTCs from patients with metastatic pancreatic cancer. Our method and platform enables the production of functionalized, patterned surfaces that interact with tumor cells, enhancing the selective capture of CTCs for biological assays.
Collapse
Affiliation(s)
- Valber A Pedrosa
- Institute of Bioscience of Botucatu, Sao Paulo State University-Unesp, Botucatu 18603-560, Brazil
| | - Kangfu Chen
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
| | - Thomas J George
- Department of Medicine, University of Florida, P.O. Box 100278, Gainesville, FL 32610, USA
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
3
|
Soleymani-Goloujeh M, Hosseini S, Baghaban Eslaminejad M. Advanced Nanotechnology Approaches as Emerging Tools in Cellular-Based Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:127-144. [PMID: 35816248 DOI: 10.1007/5584_2022_725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Stem cells are valuable tools in regenerative medicine because they can generate a wide variety of cell types and tissues that can be used to treat or replace damaged tissues and organs. However, challenges related to the application of stem cells in the scope of regenerative medicine have urged scientists to utilize nanomedicine as a prerequisite to circumvent some of these hurdles. Nanomedicine plays a crucial role in this process and manipulates surface biology, the fate of stem cells, and biomaterials. Many attempts have been made to modify cellular behavior and improve their regenerative ability using nano-based strategies. Notably, nanotechnology applications in regenerative medicine and cellular therapies are controversial because of ethical and legal considerations. Therefore, this review describes nanotechnology in cell-based applications and focuses on newly proposed nano-based approaches. Cutting-edge strategies to engineer biological tissues and the ethical, legal, and social considerations of nanotechnology in regenerative nanomedicine applications are also discussed.
Collapse
Affiliation(s)
- Mehdi Soleymani-Goloujeh
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Yang Y, Li X, Pappas D. Isolation of leukemia and breast cancer cells from liquid biopsies and clinical samples at low concentration in a 3D printed cell separation device via transferrin-receptor affinity. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
6
|
Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S, Zhang Z. Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectron 2022; 202:114025. [DOI: 10.1016/j.bios.2022.114025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022]
|
7
|
Shanko ES, Ceelen L, Wang Y, van de Burgt Y, den Toonder J. Enhanced Microfluidic Sample Homogeneity and Improved Antibody-Based Assay Kinetics Due to Magnetic Mixing. ACS Sens 2021; 6:2553-2562. [PMID: 34191498 PMCID: PMC8457298 DOI: 10.1021/acssensors.1c00050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Recent global events have distinctly demonstrated the need for fast diagnostic analysis
of targets in a liquid sample. However, microfluidic lab-on-a-chip devices for
point-of-care diagnostics can suffer from slow analysis due to poor mixing. Here, we
experimentally explore the mixing effect within a microfluidic chamber, as obtained from
superparamagnetic beads exposed to an out-of-plane (vertical) rotating magnetic field.
Various magnetic protocols are explored, and the level of sample homogeneity is measured
by determining the mixing efficiency index. In particular, we introduce a method to
induce effective mixing in a microfluidic chamber by the actuation of the same beads to
perform global swarming behavior, a collective motion of a large number of individual
entities often seen in nature. The microparticle swarming induces high fluid velocities
in initially stagnant fluids, and it can be externally controlled. The method is
pilot-tested using a point-of-care test featuring a bioluminescent assay for the
detection of antibodies. The mixing by the magnetic beads leads to increased assay
kinetics, which indeed reduces the time to sensor readout substantially. Magnetic
microparticle swarming is expected to be beneficial for a wide variety of point-of-care
devices, where fast homogeneity of reagents does play a role.
Collapse
Affiliation(s)
- Eriola-Sophia Shanko
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Lennard Ceelen
- Microsystems Research Section, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
| | - Ye Wang
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Yoeri van de Burgt
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Jaap den Toonder
- Microsystems Research Section, Department of Mechanical Engineering, and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| |
Collapse
|
8
|
Microfluidic Chips for Sepsis Diagnosis. Methods Mol Biol 2021. [PMID: 34048019 DOI: 10.1007/978-1-0716-1488-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
This chapter discusses two microfluidic-based approaches for early sepsis detection that achieve a higher accuracy than traditional blood culture analysis. Patient blood samples were included in this work to validate the performance of our chips in diagnosing sepsis. The single-parameter chip demonstrated the increased accuracy if using CD64 as a biomarker for sepsis detection compared with C-reactive protein (CRP) and procalcitonin (PCT) when applied alone. In addition, a multiparameter chip measuring a combined panel of CD25, CD64, and CD69, and achieved a high accuracy with an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.978. The combined panel was also able to detect culture-negative patients and provided a faster diagnosis. Besides, microfluidics has advantages of less time consuming, easier to manufacture, less sample loading, less complex, and portable. Therefore, our approach is of great potential to become a bedside sepsis detection method.
Collapse
|
9
|
Li X, Zhou Y, Wickramaratne B, Yang Y, Pappas D. A comparison of transferrin-receptor and epithelial cellular adhesion molecule targeting for microfluidic separation of cancer cells. Biomed Microdevices 2021; 23:28. [PMID: 33909118 DOI: 10.1007/s10544-021-00566-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic, flow cytometry, and immunomagnetic methods for cancer cell isolation have heavily relied on the Epithelial Cellular Adhesion Molecule (EpCAM) for affinity separation. While EpCAM has been used extensively for circulating tumor cell isolation, it cannot be used to isolate non-epithelial cells. The human transferrin receptor (CD71) can also be used for cancer cell isolation and has the advantage that as an affinity target it can separate virtually any cancer cell type, regardless of disease origin. However, direct comparison of the capture ability of EpCAM and CD71 has not been reported previously. In this work, cell capture with both EpCAM and CD71 were studied using a novel higher-throughput herringbone cell separation microfluidic device. Five separation chip models were designed and the one with the highest capture efficiency (average 90 ± 10%) was chosen to compare antigen targets for cell capture. Multiple cancer cell lines including CCRF-CEM, PC-3 and MDA-MB-231 were tested for cell capture performance using both ligands (anti-CD71 and anti-EpCAM) in the optimized chip design. PC-3 and MDA-MB-231 cells were spiked into blood at concentrations ranging from 0.5%-10%. PC-3 cells were separated by anti-CD71 and anti-EpCAM with 32-37% and 31-50% capture purity respectively, while MDA-MB-231 were separated with 35-53% and 33-56% capture purity using anti-CD71 and anti-EpCAM for all concentrations. The enrichment factor for the lowest concentrations of cells in blood ranged from 66-74X. The resulting enrichment of cancer cells shows that anti-CD71 was found to be statistically similar to anti-EpCAM for epithelial cancer cells, while anti-CD71 can be further used for non-epithelial cells, where anti-EpCAM cannot be used.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yun Zhou
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bhagya Wickramaratne
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yijia Yang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
10
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Wickramaratne B, Pappas D. Tandem microfluidic chip isolation of prostate and breast cancer cells from simulated liquid biopsies using CD71 as an affinity ligand. RSC Adv 2020; 10:32628-32637. [PMID: 35516489 PMCID: PMC9056606 DOI: 10.1039/d0ra03626a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
The use of blood as a liquid biopsy provides a minimally invasive and less traumatic approach for initial cancer screens as well as patient monitoring. However, current clinical protocols require a priori knowledge of cancer type for liquid biopsy analyses. Previously, we proposed the use of the human transferrin 1 receptor protein (CD71) as a universal capture target for cancer cells analyses. In this study we have attempted to identify the lowest limit of detection for circulating tumor cells of prostate (PC-3) and breast cancers (MDA-MB-231) using CD71. We used a novel high-throughput herringbone chip design which could extract PC-3 cells at 34 ± 5% purity and MDA-MB-231 cells at 43 ± 35% purity when spiked to lysed blood at 0.1%. MDA-MB-231 cell spiked samples showed higher standard deviation, but the system captured 55 ± 16 cells, which is a sufficient number of cells for subsequent analyses. Further, this herringbone chip design has been shown to be compatible with an erythrocyte lysis chip we have described in previous studies. This circuit was capable of capturing 510 ± 120 cells with a purity of 82 ± 14% using <7 μL of a whole blood sample spiked with 10% MDA-MB-231 cells. Using an erythrocyte lysis circuit eliminates the need for human intervention for target cell enrichment, thereby reducing cell loss and sample contamination. We have shown that, when used with the high-throughput herringbone chip CD71 has the capacity to sensitively detect rare target cells for routine low-cost cancer screens.
Collapse
Affiliation(s)
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX USA
| |
Collapse
|
12
|
Cheng J, Liu Y, Zhao Y, Zhang L, Zhang L, Mao H, Huang C. Nanotechnology-Assisted Isolation and Analysis of Circulating Tumor Cells on Microfluidic Devices. MICROMACHINES 2020; 11:E774. [PMID: 32823926 PMCID: PMC7465711 DOI: 10.3390/mi11080774] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs), a type of cancer cell that spreads from primary tumors into human peripheral blood and are considered as a new biomarker of cancer liquid biopsy. It provides the direction for understanding the biology of cancer metastasis and progression. Isolation and analysis of CTCs offer the possibility for early cancer detection and dynamic prognosis monitoring. The extremely low quantity and high heterogeneity of CTCs are the major challenges for the application of CTCs in liquid biopsy. There have been significant research endeavors to develop efficient and reliable approaches to CTC isolation and analysis in the past few decades. With the advancement of microfabrication and nanomaterials, a variety of approaches have now emerged for CTC isolation and analysis on microfluidic platforms combined with nanotechnology. These new approaches show advantages in terms of cell capture efficiency, purity, detection sensitivity and specificity. This review focuses on recent progress in the field of nanotechnology-assisted microfluidics for CTC isolation and detection. Firstly, CTC isolation approaches using nanomaterial-based microfluidic devices are summarized and discussed. The different strategies for CTC release from the devices are specifically outlined. In addition, existing nanotechnology-assisted methods for CTC downstream analysis are summarized. Some perspectives are discussed on the challenges of current methods for CTC studies and promising research directions.
Collapse
Affiliation(s)
- Jie Cheng
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China;
| | - Lingqian Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
| | - Chengjun Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; (J.C.); (Y.L.); (Y.Z.); (L.Z.); (H.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|