1
|
Ghosh A, Gautam K, Gupta C, Hazra C, Das L, Chakravorty N, Mishra MM, Nain A, Anbumani S, Lin CJ, Sen R, Dasgupta N, Ranjan S. Single-Step Low-Temperature Synthesis of Carbon Dots for Advanced Multiparametric Bioimaging Probe Applications. ACS APPLIED BIO MATERIALS 2024; 7:7895-7908. [PMID: 38581392 DOI: 10.1021/acsabm.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Carbon dots (CDs) have recently emerged in biomedical and agricultural domains, mainly for their probe applications in developing efficient sensors. However, the existing high-temperature approaches limit the industrial level scaling up to further translate them into different products by mass-scale fabrication of CDs. To address this, we have attempted to lower the synthesis temperature to 140 °C and synthesized different CDs using different organic acids and their combinations in a one-step approach (quantum yield 3.6% to 16.5%; average size 3 to 5 nm). Further, sensing applications of CDs have been explored in three different biological models, mainly Danio rerio (zebrafish) embryos, bacterial strains, and the Lactuca sativa (lettuce) plant. The 72 h exposure of D. rerio embryos to 0.5 and 1 mg/mL concentrations of CDs exhibited significant uptake without mortality, a 100% hatching rate, and nonsignificant alterations in heart rate. Bacterial bioimaging experiments revealed CD compatibility with Gram-positive (Bacillus subtilis) and Gram-negative (Serratia marcescens) strains without bactericidal effects. Furthermore, CDs demonstrated effective conduction and fluorescence within the vascular system of lettuce plants, indicating their potential as in vivo probes for plant tissues. The single-step low-temperature CD synthesis approach with efficient structural and optical properties enables the process as industrially viable to up-scale the technology readiness level. The bioimaging of CDs in different biological models indicates the possibility of developing a CD probe for diverse biosensing roles in diseases, metabolism, microbial contamination sensing, and more.
Collapse
Affiliation(s)
- Anupam Ghosh
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chandrika Gupta
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Chinmay Hazra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Lopamudra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Murali Mohan Mishra
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chin-Jung Lin
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nandita Dasgupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- Nanotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research (IITR), CRK Campus, Lucknow 226008, Uttar Pradesh, India
| | - Shivendu Ranjan
- NanoBio Research Lab, School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
2
|
Guo T, Mashhadimoslem H, Choopani L, Salehi MM, Maleki A, Elkamel A, Yu A, Zhang Q, Song J, Jin Y, Rojas OJ. Recent Progress in MOF-Aerogel Fabrication and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402942. [PMID: 38975677 DOI: 10.1002/smll.202402942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Hossein Mashhadimoslem
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leila Choopani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qi Zhang
- Zhejiang Kaifeng New Material Limited by Share Ltd. Longyou, Kaifeng, 324404, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Shang J, Zhou Q, Wang K, Wei Y. Engineering of Green Carbon Dots for Biomedical and Biotechnological Applications. Molecules 2024; 29:4508. [PMID: 39339503 PMCID: PMC11434350 DOI: 10.3390/molecules29184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Carbon dots (CDs) are attracting increasing research attention due to their exceptional attributes, including their biocompatibility, water solubility, minimal toxicity, high photoluminescence, and easy functionalization. Green CDs, derived from natural sources such as fruits and vegetables, present advantages over conventionally produced CDs, such as cost-effectiveness, stability, simplicity, safety, and environmental friendliness. Various methods, including hydrothermal and microwave treatments, are used to synthesize green CDs, which demonstrate strong biocompatibility, stability, and luminescence. These properties give green CDs versatility in their biological applications, such as bioimaging, biosensing, and drug delivery. This review summarizes the prevalent synthesis methods and renewable sources regarding green CDs; examines their optical features; and explores their extensive biological applications, including in bioimaging, biosensing, drug/gene delivery, antimicrobial and antiviral effects, formatting of mathematical components, cancer diagnosis, and pharmaceutical formulations.
Collapse
Affiliation(s)
| | | | | | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (J.S.); (Q.Z.); (K.W.)
| |
Collapse
|
4
|
Usman M, Cheng S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. ENG 2024; 5:2223-2263. [DOI: 10.3390/eng5030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The push for sustainability in nanomaterials has catalyzed significant advancements in the green synthesis of carbon dots (CDs) from renewable resources. This review uniquely explores recent innovations, including the integration of hybrid techniques, such as micro-wave-assisted and ultrasonic-assisted hydrothermal methods, as well as photocatalytic synthesis. These combined approaches represent a breakthrough, offering rapid production, precise control over CD properties, and enhanced environmental sustainability. In addition, the review emphasizes the growing use of green solvents and bio-based reducing agents, which further reduce the environmental footprint of CD production. This work also addresses key challenges, such as consistently controlling CD properties—size, shape, and surface characteristics—across different synthesis processes. Advanced characterization techniques and process optimizations are highlighted as essential strategies to overcome these hurdles. Furthermore, this review pioneers the integration of circular economy principles into CD production, proposing novel strategies for sustainable material use and waste reduction. By exploring innovative precursor materials, refining doping and surface engineering techniques, and advocating for comprehensive life cycle assessments, this work sets a new direction for future research. The insights provided here represent a significant contribution to the field, paving the way for more sustainable, efficient, and scalable CD production with diverse applications in optoelectronics, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Yuan L, Shao C, Zhang Q, Webb E, Zhao X, Lu S. Biomass-derived carbon dots as emerging visual platforms for fluorescent sensing. ENVIRONMENTAL RESEARCH 2024; 251:118610. [PMID: 38442811 DOI: 10.1016/j.envres.2024.118610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Biomass-derived carbon dots (CDs) are non-toxic and fluorescently stable, making them suitable for extensive application in fluorescence sensing. The use of cheap and renewable materials not only improves the utilization rate of waste resources, but it is also drawing increasing attention to and interest in the production of biomass-derived CDs. Visual fluorescence detection based on CDs is the focus of current research. This method offers high sensitivity and accuracy and can be used for rapid and accurate determination under complex conditions. This paper describes the biomass precursors of CDs, including plants, animal remains and microorganisms. The factors affecting the use of CDs as fluorescent probes are also discussed, and a brief overview of enhancements made to the preparation process of CDs is provided. In addition, the application prospects and challenges related to biomass-derived CDs are demonstrated.
Collapse
Affiliation(s)
- Lili Yuan
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Congying Shao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China.
| | - Qian Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, China
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States
| | - Xianhui Zhao
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, United States.
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
6
|
Ullal N, Mehta R, Sunil D. Separation and purification of fluorescent carbon dots - an unmet challenge. Analyst 2024; 149:1680-1700. [PMID: 38407365 DOI: 10.1039/d3an02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Literature reports demonstrate versatile optical applications of fluorescent carbon dots (CDs) in biological imaging, full-color solid-state lighting, optoelectronics, sensing, anticounterfeiting and so on. The fluorescence associated with CDs may originate significantly from byproducts generated during their synthesis, which need to be eliminated to achieve error-free results. The significance of purification, specifically for luminescence-based characterizations, is highly critical and imperative. Thus, there is a pressing demand to implement consistent and adequate purification strategies to reduce sample complexity and thereby realize reliable results that can provide a tactical steppingstone towards the advancement of CDs as next-generation optical materials. The article focuses on the mechanism of origin of fluorescence from CDs and further demonstrates the different purification approaches including dialysis, centrifugation, filtration, solvent extraction, chromatography, and electrophoresis that have been adopted by various researchers. Furthermore, the fundamental separation mechanism, as well as the advantages and limitations of each of these purification techniques are discussed. The article finally provides the critical challenges of these purification techniques that need to be overcome to obtain homogeneous CD fractions that demonstrate coherent and reliable optical features for suitable applications.
Collapse
Affiliation(s)
- Namratha Ullal
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Riya Mehta
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India.
| |
Collapse
|
7
|
Bosu S, Rajamohan N, Sagadevan S, Raut N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. CHEMOSPHERE 2023; 345:140471. [PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Collapse
Affiliation(s)
- Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nitin Raut
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
8
|
Oladzadabbasabadi N, Dheyab MA, Nafchi AM, Ghasemlou M, Ivanova EP, Adhikari B. Turning food waste into value-added carbon dots for sustainable food packaging application: A review. Adv Colloid Interface Sci 2023; 321:103020. [PMID: 37871382 DOI: 10.1016/j.cis.2023.103020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
Carbon dots (CDs) are a recent addition to the nanocarbon family, encompassing both crystalline and amorphous phases. They have sparked significant research interest due to their unique electrical and optical properties, remarkable biocompatibility, outstanding mechanical characteristics, customizable surface chemistry, and negligible cytotoxicity. Their current applications are mainly limited to flexible photonic and biomedical devices, but they have also garnered attention for their potential use in intelligent packaging. The conversion of food waste into CDs further contributes to the concept of the circular economy. It provides a comprehensive overview of emerging green technologies, energy-saving reactions, and cost-effective starting materials involved in the synthesis of CDs. It also highlights the unique properties of biomass-derived CDs, focusing on their structural performance, cellular toxicity, and functional characteristics. The application of CDs in the food industry, including food packaging, is summarized in a concise manner. This paper sheds light on the current challenges and prospects of utilizing CDs in the packaging industry. It aims to provide researchers with a roadmap to tailor the properties of CDs to suit specific applications in the food industry, particularly in food packaging.
Collapse
Affiliation(s)
| | - Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Department of Physics, College of Science, University of Anbar, 31001 Ramadi, Iraq
| | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia.
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC 3001., Australia
| |
Collapse
|
9
|
Sheikh MA, Chandok RS, Abida K. High energy density storage, antifungal activity and enhanced bioimaging by green self-doped heteroatom carbon dots. DISCOVER NANO 2023; 18:132. [PMID: 37870636 PMCID: PMC10593680 DOI: 10.1186/s11671-023-03910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Self-heteroatom-doped N-carbon dots (N-CDs) with a 2.35 eV energy gap and a 65.5% fluorescence quantum yield were created using a one-step, efficient, inexpensive, and environmentally friendly microwave irradiation method. FE-SEM, EDX, FT-IR, XRD, UV-VIS spectroscopy, FL spectroscopy, and CV electrochemical analysis were used to characterise the produced heteroatom-doped N-CDs. The graphitic carbon dot surface is doped with heteroatom functional groups such (S, P, K, Mg, Zn) = 1%, in addition to the additional passivating agent (N), according to the EDX surface morphology and the spontaneous heteroatom doping was caused by the heterogeneous chemical composition of pumpkin seeds. These spontaneous heteroatom-doped N-CDs possess quasispherical amorphous graphitic structure with an average size of less than 10 nm and the interplaner distance of 0.334 nm. Calculations utilising cyclic voltammetry showed that the heteroatom-doped N-CDs placed on nickel electrodes had a high specific capacitance value of 1044 F/g at a scan rate of 10 mV/s in 3 M of KOH electrolyte solution. Furthermore, it demonstrated a high energy and power density of 28.50 Wh/kg and 3350 W/kg, respectively. The higher value of specific capacitance and energy density were attributed to the fact that the Ni/CDs electrode material possesses both EDLC and PC properties due to the sufficient surface area and the multiple active sites of the prepared N-CDs. Furthermore, the heteroatom N-CDs revealed the antifungal action and bioimaging of the "Cladosporium cladosporioides" mould, which is mostly accountable for economic losses in agricultural products. The functional groups of nitrogen, sulphur, phosphorus, and zinc on the surface of the CDs have strong antibacterial and antifungal properties as well as fluorescence enhanced bioimaging.
Collapse
Affiliation(s)
| | - R S Chandok
- Sri Guru Tegh Bahadur Khalsa College, Jabalpur, India
| | - Khan Abida
- Government Degree College for Women Anantnag, Srinagar, India
| |
Collapse
|
10
|
Kaur I, Batra V, Kumar Reddy Bogireddy N, Torres Landa SD, Agarwal V. Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chem 2023; 406:135029. [PMID: 36463597 DOI: 10.1016/j.foodchem.2022.135029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/06/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
The ecosystem across the globe has been adversely affected due to the adoption of unsustainable growth strategies. Overuse of organic pollutants such as dyes, pesticides, disinfectants, food additives and antibiotics, along with their release into the environment without proper treatment has severely affected the food chain and water bodies, hence ultimately the human race. As the organic contaminants, being non-biodegradable, persist in the environment for a long duration, a sustainable method for the detection of these harmful organic pollutants is essential. For food safety and restoration of ecological balance, simple, non-toxic, cost-effective and environmentally friendly green precursor derived carbon dots (CDs) are favorable as compared to inorganic nanoparticles (CdTe, CdS etc.) and chemically derived CDs. This review covers the summary of the studies devoted to the optical detection of organic pollutants, food additives and antibiotics through green precursor derived CDs, reported during the last few years. The upcoming studies of optical sensing systems with sustainable CDs provide powerful insight towards pollutant detection, as well as act as a future monitoring tool.
Collapse
Affiliation(s)
- Inderbir Kaur
- Department of Electronics, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | - Vandana Batra
- Department of Physics, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi 110075, India
| | | | - Simei Darinel Torres Landa
- Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Vivechana Agarwal
- Center for Research in Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México.
| |
Collapse
|
11
|
Tan J, Zhao S, Chen J, Pan X, Li C, Liu Y, Wu C, Li W, Zheng M. Preparation of nitrogen-doped carbon dots and their enhancement on lettuce yield and quality. J Mater Chem B 2023; 11:3113-3123. [PMID: 36947418 DOI: 10.1039/d2tb02817d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Nanotechnology is an effective way to stimulate the yield potential of crops. Various nano-fertilizers and nano-carriers are gradually being developed to bring about a technological revolution in the agricultural industry. As a biocompatible water-soluble nanomaterial, carbon dots (CDs) have attracted the attention of researchers for applications in agriculture. In this study, we prepared nitrogen-doped CDs (N-CDs) as a type of water-soluble carbon nanofertilizer by a one-pot hydrothermal method, and investigated its effects on lettuce biomass and quality. 100 and 200 mg L-1 of N-CDs substantially promoted lettuce biomass accumulation (41.70%), elevated lettuce nutrient content, as well as promoted the accumulation of major nutrients. Moreover, 100 mg L-1 N-CDs increased the chlorophyll a content by 12.68%, significantly increased the electron transport rate (ETR) by 38.61%, significantly increased the light energy conversion efficiency (Y(II)) by 31.24% and increased the Rubisco activity by 60.61%, which are important reasons for its increase in actual photosynthesis rate. N-CDs also have a positive effect on plant nitrogen metabolism by promoting the activity of glutamine synthetase. The significant benefits of N-CDs on lettuce make them have great potential for agricultural yield increase and quality improvement.
Collapse
Affiliation(s)
- Jieqiang Tan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Shili Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Junyu Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Xiaoqin Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Chen Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Caijuan Wu
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, China
| | - Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Mingtao Zheng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, People's Republic of China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525100, China
| |
Collapse
|
12
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
13
|
Kanwal A, Bibi N, Hyder S, Muhammad A, Ren H, Liu J, Lei Z. Recent advances in green carbon dots (2015-2022): synthesis, metal ion sensing, and biological applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1068-1107. [PMID: 36262178 PMCID: PMC9551278 DOI: 10.3762/bjnano.13.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/14/2022] [Indexed: 06/08/2023]
Abstract
Carbon dots (CDs) show extensive potential in various fields such as sensing, bioimaging, catalysis, medicine, optoelectronics, and drug delivery due to their unique properties, that is, low cytotoxicity, cytocompatibility, water-solubility, multicolor wavelength tuned emission, photo-stability, easy modification, strong chemical inertness, etc. This review article especially focuses on the recent advancement (2015-2022) in the green synthesis of CDs, their application in metal ions sensing and microbial bioimaging, detection, and viability studies as well as their applications in pathogenic control and plant growth promotion.
Collapse
Affiliation(s)
- Aisha Kanwal
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, China
| | - Naheed Bibi
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Charsadda Road, Larama, Peshawar, Pakistan
| | - Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Arif Muhammad
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, China
| | - Hao Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, China
| | - Jiangtao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, China
| |
Collapse
|
14
|
Teo JYQ, Zheng XT, Seng DHL, Hui HK, Chee PL, Su X, Loh XJ, Lim JYC. Waste Polystyrene‐derived Sulfonated Fluorescent Carbon Nanoparticles for Cation Sensing. ChemistrySelect 2022. [DOI: 10.1002/slct.202202720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jerald Y. Q. Teo
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Debbie Hwee Leng Seng
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Hui Kim Hui
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
- Prof. Dr. JYC Lim Department of Materials Science and Engineering National University of Singapore (NUS) 9 Engineering Drive 1 Singapore Singapore 117576
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis Singapore Singapore 136834
- Prof. Dr. JYC Lim Department of Materials Science and Engineering National University of Singapore (NUS) 9 Engineering Drive 1 Singapore Singapore 117576
| |
Collapse
|
15
|
Meng A, Zhang Y, Wang X, Xu Q, Li Z, Sheng L, Yan L. Fluorescence probe based on boron-doped carbon quantum dots for high selectivity “on-off-on” mercury ion sensing and cell imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Ren G, Wang Z, Tian Y, Li J, Ma Y, Zhou L, Zhang C, Guo L, Diao H, Li L, Lu L, Ma S, Wu Z, Yan L, Liu W. Targeted chemo-photodynamic therapy toward esophageal cancer by GSH-sensitive theranostic nanoplatform. Biomed Pharmacother 2022; 153:113506. [DOI: 10.1016/j.biopha.2022.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022] Open
|
17
|
Yang H, Ji Z, Zeng Y, Zhang J, Chen L, Wang H, Yang Y, Guo L, Li L. Aggregation-induced emission monomer-based fluorescent molecularly imprinted poly(ionic liquid) synthesized by a one-pot method for sensitively detecting 4-nitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1023-1030. [PMID: 35188146 DOI: 10.1039/d1ay02132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An aggregation-induced emission monomer-based fluorescent molecularly imprinted poly(ionic liquid) (AIE-FMIPIL) was synthesized for the first time with an AIE probe 4-(1,2,2-triphenylvinyl)phenyl acrylate (TPE), and an ionic liquid as dual functional monomers, and an ionic liquid as cross-linker. AIE-FMIPIL displayed a sphere-like shape and its average diameter was 410 nm. The absolute quantum yields of TPE and AIE-FMIPIL were 9.23% and 12.61%, respectively. The synergetic effect of TPE in the AIE-FMIPIL framework contributed to the higher quantum yield of AIE-FMIPIL. 4-Nitrophenol (4-NP) efficiently quenched AIE-FMIPIL with high fluorescence based on the Förster resonance energy transfer mechanism. The synthesized AIE-FMIPIL sensor was highly sensitive for 4-NP detection (linear range, 0.02-1.5 μM) in the optimal detection condition, with a low detection limit of 10 nM (S/N = 3). AIE-FMIPIL showed increased sensitivity and quenching efficiency compared with AIE-FMIP comprising a traditional monomer and cross-linker. AIE-FMIPIL exhibited selective binding to 4-NP because of the imprinted sites. AIE-FMIPIL was adopted to detect 4-NP in environmental samples.
Collapse
Affiliation(s)
- Hanxing Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213016, P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Zhongguang Ji
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Jian Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing Key Laboratory of Molecular Recognition and Sensing, Jiaxing 314001, P. R. China.
| |
Collapse
|
18
|
Liang YM, Yang H, Zhou B, Chen Y, Yang M, Wei KS, Yan XF, Kang C. Waste tobacco leaves derived carbon dots for tetracycline detection: Improving quantitative accuracy with the aid of chemometric model. Anal Chim Acta 2022; 1191:339269. [PMID: 35033278 DOI: 10.1016/j.aca.2021.339269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
The recycling and reutilization of biomass wastes are significant for environmental protection and sustainable development. Recently, there have many studies on utilizing biomass wastes to produce carbon dots. Whereas, the spectrum shift effect that occurs in the quantitative application of carbon dots as fluorescent probes limits the accuracy of the quantitative analysis. In this work, waste tobacco leaves were used as the carbon source for synthesizing a novel carbon dots (CDs(WTL)) through a facile hydrothermal method. The CDs(WTL) possess a series of excellent properties, including good water solubility, well stability, and high fluorescence quantum yield. The fluorescent intensity of the CDs(WTL) can be quenched by tetracycline (TC) obviously, but there is a spectrum shift. In order to use the CDs(WTL) as fluorescent probes to quantify TC with higher accuracy, a quantification fluorescence model (QFM) was introduced to overcome this spectrum shift effect that often occurs. The coefficient of determination (R2) of traditional quantification model (TQ), partial least squares (PLS), and QFM are 0.9672, 0.9834, and 0.9991, respectively; the average relative predictive error (ARPE) of TQ, PLS, and QFM are 8.8%, 4.5%, and 3.9% for the spiked water samples, and 21.9%, 22.0%, and 2.9% for spiked tablet samples, respectively. The obtained results suggest that QFM is more accurate than PLS and TQ for the TC detection. By utilizing QFM, the spike recoveries (mean ± standard deviation) in three kinds of real tablet samples produced by different manufacturers are 98.9 ± 3.6%, 102.5 ± 6.2%, and 98.5 ± 2.7%, respectively; the spike recovery in river water samples is 99.4 ± 5.0%. In addition, high performance liquid chromatography (HPLC) was used as a reference method, the F and t tests suggest that there are no significant differences on the precision and accuracy between QFM and HPLC methods.
Collapse
Affiliation(s)
- Yan-Mei Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Bo Zhou
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yang Chen
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Min Yang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Ke-Su Wei
- Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Xiu-Fang Yan
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China; Key Laboratory of Tobacco Quality Research of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
19
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|
20
|
Jie M, Guo R, Zhang Y, Huang J, Xu G, Li M, Yue X, Ji B, Bai Y. A facile fluorescent sensor based on nitrogen-doped carbon dots derived from Listeria monocytogenes for highly selective and visual detection of iodide and pH. RSC Adv 2022; 12:7295-7305. [PMID: 35424687 PMCID: PMC8982288 DOI: 10.1039/d2ra00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes-derived nitrogen-doped carbon dots served as a facile fluorescent sensor with excellent sensing performances for iodide with low detection limit of 20 nmol L−1 and wide pH range from 1.81 to 11.82.
Collapse
Affiliation(s)
- Mingsha Jie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Ruipeng Guo
- School of Mechanical and Electrical Engineering, Henan Vocational College of Applied Technology, Zhengzhou, Henan Province, 450042, P. R. China
| | - Yanan Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Jianing Huang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Gaigai Xu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
| | - Min Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoyue Yue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Baocheng Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450001, P. R. China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, Henan Province, 450001, P. R. China
| |
Collapse
|
21
|
Cui L, Ren X, Sun M, Liu H, Xia L. Carbon Dots: Synthesis, Properties and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3419. [PMID: 34947768 PMCID: PMC8705349 DOI: 10.3390/nano11123419] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
Carbon dots (CDs) are known as the rising star of carbon-based nanomaterials and, by virtue of their unique structure and fascinating properties, they have attracted considerable interest in different fields such as biological sensing, drug delivery, photodynamic therapy, photocatalysis, and solar cells in recent years. Particularly, the outstanding electronic and optical properties of the CDs have attracted increasing attention in biomedical and photocatalytic applications owing to their low toxicity, biocompatibility, excellent photostability, tunable fluorescence, outstanding efficient up-converted photoluminescence behavior, and photo-induced electron transfer ability. This article reviews recent progress on the synthesis routes and optical properties of CDs as well as biomedical and photocatalytic applications. Furthermore, we discuss an outlook on future and potential development of the CDs based biosensor, biological dye, biological vehicle, and photocatalysts in this booming research field.
Collapse
Affiliation(s)
- Lin Cui
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Yuanyang Branch Department, Beijing Jingshan School, Beijing 100040, China
| | - Xin Ren
- International Department, Beijing No. 12 High School, Beijing 100071, China;
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Haiyan Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| | - Lixin Xia
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, China;
| |
Collapse
|
22
|
Moradi M, Molaei R, Kousheh SA, T Guimarães J, McClements DJ. Carbon dots synthesized from microorganisms and food by-products: active and smart food packaging applications. Crit Rev Food Sci Nutr 2021; 63:1943-1959. [PMID: 34898337 DOI: 10.1080/10408398.2021.2015283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nanotechnology is rapidly becoming a commercial reality for application in food packaging. In particular, the incorporation of nanoparticles into packaging materials is being used to increase the shelf life and safety of foods. Carbon dots (C-dots) have a diverse range of potential applications in food packaging. They can be synthesized from environmentally friendly sources such as microorganisms, food by-products, and waste streams, or they may be generated in foods during normal processing operations, such as cooking. These processes often produce nitrogen- and sulfur-rich heteroatom-doped C-dots, which are beneficial for certain applications. The incorporation of C-dots into food packaging materials can improve their mechanical, barrier, and preservative properties. Indeed, C-dots have been used as antioxidant, antimicrobial, photoluminescent, and UV-light blocker additives in food packaging materials to reduce the chemical deterioration and inhibit the growth of pathogenic and spoilage microorganisms in foods. This article reviews recent progress on the synthesis of C-dots from microorganisms and food by-products of animal origin. It then highlights their potential application for the development of active and intelligent food packaging materials. Finally, a discussion of current challenges and future trends is given.
Collapse
Affiliation(s)
- Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Seyedeh Alaleh Kousheh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary Medicine, Federal Fluminense University (UFF), Niterói, Rio de Janeiro, Brazil
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
23
|
Xu H, Wang H, Lu Y, Zeng Y, Yang Y, Zhang Z, Wang H, Wang X, Li L. CeO 2 quantum dots for highly selective and ultrasensitive fluorescence detection of 4-nitrophenol via the fluorescence resonance energy transfer mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120115. [PMID: 34218179 DOI: 10.1016/j.saa.2021.120115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
A rapid and simple fluorescence probe based on CeO2 quantum dots (QDs) was developed for highly selective and ultrasensitive direct determination of 4-nitrophenol (4-NP). CeO2 QDs were prepared using the sol-gelmethod with the precursor of Ce(NO3)3·6H2O as a cerium source. The products were characterized through high-resolution electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The fluorescent probe based on CeO2 QDs exhibited a broad linear response to the concentration of 4-NP in the range of 0.005-75.00 μM and provided a low detection limit of 1.50 nM. The fluorescence of CeO2 QDs was quenched by 4-NP through the fluorescence resonance energy transfer mechanism owing to the well overlaps between the fluorescence emission spectrum of CeO2 QDs with the ultraviolet absorption spectrum of 4-NP. This result was confirmed by the time-resolved fluorescence spectra and the evaluation of the interaction distance between CeO2 QDs and 4-NP. The prepared CeO2 QDs are successfully applied to the determination of 4-NP in real water samples, where the spiked recoveries range from 98.2% to 102.4%.
Collapse
Affiliation(s)
- Hongqiang Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Hailong Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China.
| | - Yixia Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Yanbo Zeng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Yiwen Yang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Zulei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China
| | - Xiao Wang
- School of Science, East China University of Science and Technology, Shanghai 200237, China.
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiahang Road 118, Jiaxing 314001, China.
| |
Collapse
|
24
|
Liao S, Ding Z, Wang S, Tan F, Ge Y, Cui Y, Tan N, Wang H. Fluorescent nitrogen-doped carbon dots for high selective detecting p-nitrophenol through FRET mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119897. [PMID: 33989974 DOI: 10.1016/j.saa.2021.119897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
A facile, friendly and one-step hydrothermal protocol was used to synthesize nitrogen-doped carbon dots (N-CDs) by utilizing hexamethylenetetramine and ethanediamine as the carbon and nitrogen sources. It demonstrated good water solubility and fluorescence properties were stable, whether in acidic or alkaline. Quantum yield (QY) of N-CDs was 8.3% at an excitation wavelength of 325 nm with maximum emission at 425 nm. The fluorescence of N-CDs achieved very high fluorescence quenching of 60% in the detection of p-nitrophenol (p-NP) in aqueous medium via fluorescence resonance energy transfer (FRET) mechanisms. Under optimum conditions, fluorescence probs of N-CDs had strong selectivity to p-NP, and the fluorescence intensity was linearly proportional to p-NP concentration from 0.5 to 70.0 μM with a detection limit of 0.201 μM. The corresponding cell experiments were also performed, indicating that the prepared N-CDs possessed low cytotoxicity and good biocompatibility. Meanwhile, the N-CDs can be used for the determination of p-NP in river water and industrial wastewater.
Collapse
Affiliation(s)
- Sen Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| | - Zui Ding
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Shuo Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Fangyu Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yi Ge
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Yaqing Cui
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Ni Tan
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan Province 421001, PR China.
| |
Collapse
|
25
|
Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon BH. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers (Basel) 2021; 13:3190. [PMID: 34578091 PMCID: PMC8469539 DOI: 10.3390/polym13183190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cutting-edge technologies are making inroads into new areas and this remarkable progress has been successfully influenced by the tiny level engineering of carbon dots technology, their synthesis advancement and impressive applications in the field of allied sciences. The advances of science and its conjugation with interdisciplinary fields emerged in carbon dots making, their controlled characterization and applications into faster, cheaper as well as more reliable products in various scientific domains. Thus, a new era in nanotechnology has developed into carbon dots technology. The understanding of the generation process, control on making processes and selected applications of carbon dots such as energy storage, environmental monitoring, catalysis, contaminates detections and complex environmental forensics, drug delivery, drug targeting and other biomedical applications, etc., are among the most promising applications of carbon dots and thus it is a prominent area of research today. In this regard, various types of carbon dot nanomaterials such as oxides, their composites and conjugations, etc., have been garnering significant attention due to their remarkable potential in this prominent area of energy, the environment and technology. Thus, the present paper highlights the role and importance of carbon dots, recent advancements in their synthesis methods, properties and emerging applications.
Collapse
Affiliation(s)
- Areeba Khayal
- Industrial Chemistry Section, Aligarh Muslim University, Aligarh 202002, India;
| | - Vinars Dawane
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India;
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | - Samreen Heena Khan
- Centre of Research and Development, YNC ENVIS PRIVATE LIMITED, New Delhi 110059, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
26
|
Zhao D, Zhang R, Xu M, Xiao X, Zhao H, Huang X. Multifunctional Biomedical Applications of Nitrogen and Sulfur Co-Doped Carbon Dots. J Biomed Nanotechnol 2021; 17:1598-1611. [PMID: 34544537 DOI: 10.1166/jbn.2021.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Multifunctional carbon dots have drawn considerable attention due to their potential biomedical application value. We report the preparation of blue-green fluorescence-emitting, multifunctional, nitrogen-and-sulfur co-doped carbon dots (N, S-CDs) synthesized via a one-step process using 1-thioglycerol as a sulfur source, glucose and citric acid as carbon sources, and polyethyleneimine as a nitrogen source. Because of abundant amino and sulfur content, the CDs exhibited high sensibility and selectivity for detecting Cu2+ (detection limit: 0.01 μM, linear range: 0.025 to 50 μM). Fast and sensitive detection of tiopronin was also achieved on the basis of the fluorescence "off-on" mode considering the strong affinity between tiopronin and Cu2+. The N, S-CDs exhibited good biocompatibility as determined by fluorescence imaging using onion epidermal cells and gram-positive bacteria. The CDs also exhibited excellent antimicrobial ability against the gram-positive bacteria. Our results indicate that these novel N, S-CDs could be ideal candidates for several biochemical applications such as antibacterial treatment and detection of small biomolecules.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Mengyu Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Haiyan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| | - Xianju Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China; National Demonstration Center for Experimental Ethnopharmacology Education (South-Central University for Nationalities), Wuhan 430065, China
| |
Collapse
|
27
|
Zhang W, Sigdel G, Mintz KJ, Seven ES, Zhou Y, Wang C, Leblanc RM. Carbon Dots: A Future Blood-Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier. Int J Nanomedicine 2021; 16:5003-5016. [PMID: 34326638 PMCID: PMC8316758 DOI: 10.2147/ijn.s318732] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
Drug delivery across the blood-brain barrier (BBB) is one of the biggest challenges in modern medicine due to the BBB's highly semipermeable property that limits most therapeutic agents of brain diseases to enter the central nervous system (CNS). In recent years, nanoparticles, especially carbon dots (CDs), exhibit many unprecedented applications for drug delivery. Several types of CDs and CD-ligand conjugates have been reported successfully penetrating the BBB, which shows a promising progress in the application of CD-based drug delivery system (DDS) for the treatment of CNS diseases. In this review, our discussion of CDs includes their classification, preparations, structures, properties, and applications for the treatment of neurodegenerative diseases, especially Alzheimer's disease (AD) and brain tumor. Moreover, abundant functional groups on the surface, especially amine and carboxyl groups, allow CDs to conjugate with diverse drugs as versatile drug nanocarriers. In addition, structure of the BBB is briefly described, and mechanisms for transporting various molecules across the BBB and other biological barriers are elucidated. Most importantly, recent developments in drug delivery with CDs as BBB-penetrating nanodrugs and drug nanocarriers to target CNS diseases especially Alzheimer's disease and brain tumor are summarized. Eventually, future prospects of the CD-based DDS are discussed in combination with the development of artificial intelligence and nanorobots.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Ganesh Sigdel
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
28
|
Wang B, Ji Y, Xia Y, Qin K, Li B. The exploitation of thermophile resources in hot springs: fluorescent carbon dots derived from Ureibacillus thermosphaericus for multicolour cellular imaging and selectivity detection of heavy metals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1810-1815. [PMID: 33885673 DOI: 10.1039/d0ay02213f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial biomass, as an environmentally friendly resource, has attracted considerable attention as a green biomaterial for the production of unique and functionalised CDs; however, further exploration is required to characterise CDs derived from bacteria. In this study, a green biomaterial (fluorescence CDs-HS18) was successfully synthesised via a hydrothermal method from Ureibacillus thermosphaericus HS-18 specimens isolated from a hot spring. The prepared CDs-HS18 possess excellent photo-physical properties, outstanding fluorescence capabilities, and high biocompatibility, which make them desirable candidates for multi-mode imaging applications. Our results demonstrate that the prepared CDs can selectively stain the membrane of the biological cells tested and can be rapidly distributed to all parts of the leaf via the veins and intercellular interstitium through transpiration. Additionally, CDs-HS18 are likely to enter the digestive tract of Microworms through ingestion and spread rapidly through the entire body and may finally be excreted through the anus. Furthermore, the rapid and highly selective detection platform based on CDs-HS18 exhibited an excellent linear response for Cr6+ between 0 and 9 μM, with a detection limit of 36 nM. This research will expand the understanding of the characteristics of green biomaterials derived from bacteria and widen the application scope of hot spring resources.
Collapse
Affiliation(s)
- Bin Wang
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650500, China. and City College, Kunming University of Science and Technology, Kunming 650500, China
| | - Yang Ji
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518000, China
| | - Yonghua Xia
- City College, Kunming University of Science and Technology, Kunming 650500, China
| | - Kunhao Qin
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen 518000, China
| | - Bo Li
- Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
29
|
Zheng X, Qin K, He L, Ding Y, Luo Q, Zhang C, Cui X, Tan Y, Li L, Wei Y. Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr 6. Analyst 2021; 146:911-919. [PMID: 33237046 DOI: 10.1039/d0an01599g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon dots (CDs) and photoluminescent carbon dots (Pn-CDs) are promising nanomaterials due to their bioimaging applications and have attracted considerable attention because of their excellent stability, good biocompatibility, and low biotoxicity. Here, the Pn-CDs and highly fluorescent nitrogen-doped CDs (Pn N-CDs) derived from Panax notoginseng were successfully synthesized by a simple hydrothermal method. Pn N-CDs exhibit optical properties and stability superior to those of Pn-CDs and can be better used as fluorescent dyes and probes in biological imaging. The obtained Pn N-CDs can be effectively applied to the imaging of bacteria, fungi, plant cells, and protozoa. In addition, Pn N-CDs can perform specific staining on the membranes of all tested cells. The in vivo imaging of mice revealed that Pn N-CDs exhibit nontoxicity and good biocompatibility and biodistribution. Furthermore, Pn N-CDs can be utilized as fluorescent probes for the rapid and highly selective detection of Cr6+. Hence, a simple, cost-effective, scalable, and green synthetic approach based on traditional Chinese medicine-derived CDs can be used to develop biolabeling, membrane targeting, and optical sensing probes.
Collapse
Affiliation(s)
- Xiaodan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ding Y, Tan W, Zheng X, Ji X, Song P, Bao L, Zhang C, Shang J, Qin K, Wei Y. Serratia marcescens-derived fluorescent carbon dots as a platform toward multi-mode bioimaging and detection of p-nitrophenol. Analyst 2021; 146:683-690. [PMID: 33210668 DOI: 10.1039/d0an01624a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon dots (CDs) have excellent application prospects in various fields such as fluorescent dyes, but expanding their application, especially in bioimaging and the detection of organic pollutants, is still a major research objective. In this study, fluorescent CDs were successfully synthesized via the hydrothermal method using Serratia marcescens KMR-3. The platform based on CDs-KMR3 exhibited excellent stability, good biocompatibility, and low biotoxicity, and can be effectively applied to the imaging of bacteria, fungi, plant cells, protozoa and mammalian cells, and can specifically stain the membranes of all tested cells. In this study, for the first time, bacteria-derived CDs were used to image the representative species of organisms ranging from lower-order to higher-order organisms, thereby proving the feasibility of the application of CDs in the fluorescence imaging of Paramecium caudatum. Additionally, CDs-KMR3 can rapidly diffuse into all the parts of the leaf through diffusion into the veins and intercellular interstitium in response to the induction of transpiration. Moreover, the data illustrate that CDs-KMR3 are likely to enter the digestive tracts of microworms by ingestion through the oral cavity and pharynx, and spread to the pseudocoelom and somatic cells, and finally to be excreted from microworms through the anus. Furthermore, this platform can be utilized as fluorescent probes for the rapid and highly selective detection of p-nitrophenol (p-NP). Moreover, this study contributed to the increased application of bacteria-derived CDs in bioimaging and detection of p-NP.
Collapse
Affiliation(s)
- Yafang Ding
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nanotheranostic Carbon Dots as an Emerging Platform for Cancer Therapy. JOURNAL OF NANOTHERANOSTICS 2020. [DOI: 10.3390/jnt1010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer remains one of the most deadly diseases globally, but carbon-based nanomaterials have the potential to revolutionize cancer diagnosis and therapy. Advances in nanotechnology and a better understanding of tumor microenvironments have contributed to novel nanotargeting routes that may bring new hope to cancer patients. Several low-dimensional carbon-based nanomaterials have shown promising preclinical results; as such, low-dimensional carbon dots (CDs) and their derivatives are considered up-and-coming candidates for cancer treatment. The unique properties of carbon-based nanomaterials are high surface area to volume ratio, chemical inertness, biocompatibility, and low cytotoxicity. It makes them well suited for delivering chemotherapeutics in cancer treatment and diagnosis. Recent studies have shown that the CDs are potential applicants in biomedical sciences, both as nanocarriers and nanotransducers. This review covers the most commonly used CD nanoparticles in nanomedicines intended for the early diagnosis and therapy of cancer.
Collapse
|
32
|
Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of Carbon Dots Produced from Biomass Wastes. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2316. [PMID: 33238367 PMCID: PMC7700468 DOI: 10.3390/nano10112316] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
The fluorescent carbon dot is a novel type of carbon nanomaterial. In comparison with semiconductor quantum dots and fluorescence organic agents, it possesses significant advantages such as excellent photostability and biocompatibility, low cytotoxicity and easy surface functionalization, which endow it a wide application prospect in fields of bioimaging, chemical sensing, environmental monitoring, disease diagnosis and photocatalysis as well. Biomass waste is a good choice for the production of carbon dots owing to its abundance, wide availability, eco-friendly nature and a source of low cost renewable raw materials such as cellulose, hemicellulose, lignin, carbohydrates and proteins, etc. This paper reviews the main sources of biomass waste, the feasibility and superiority of adopting biomass waste as a carbon source for the synthesis of carbon dots, the synthetic approaches of carbon dots from biomass waste and their applications. The advantages and deficiencies of carbon dots from biomass waste and the major influencing factors on their photoluminescence characteristics are summarized and discussed. The challenges and perspectives in the synthesis of carbon dots from biomass wastes are also briefly outlined.
Collapse
Affiliation(s)
- Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China;
| | - Ying Huang
- Key Laboratory of Tobacco Quality Research of Guizhou Province, College of Tobacco Science, Guizhou University, Guiyang 550025, China;
| | - Hui Yang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China;
| | - Xiu Fang Yan
- Key Laboratory of Tobacco Quality Research of Guizhou Province, College of Tobacco Science, Guizhou University, Guiyang 550025, China;
| | - Zeng Ping Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
33
|
Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, Zhang Y. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Mater Chem B 2020; 8:10290-10308. [PMID: 33103712 DOI: 10.1039/d0tb01881c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group IV nanodots (NDs) mainly including carbon (C), silicon (Si), germanium (Ge) have aroused much attention as one type of important nanomaterials that are widely studied in optoelectronics, semiconductors, sensors and biomedicine-related fields owing to the low cost of synthesis, good stability, excellent biocompatibility, and some attractive newly emerged properties. In this review, the synthesis, surface engineering and application in bioimaging and biotherapy of group IV NDs are summarized and discussed. The recent progress in the rational synthesis and functionalization, specific therapy-related properties, together with in vivo and in vitro bioimaging are highlighted. Their new applications in biotherapy such as photothermal therapy (PTT) and photodynamic therapy (PDT) are illustrated with respect to C, Si and Ge NDs. The current challenges and future applications of these emerging materials in bioimaging and biotherapy are presented. This review provides readers with a distinct perspective of the group IV NDs nanomaterials for synthesis and surface engineering, and newly emerging properties related to applications in biomedicine.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peipei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Weipeng Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|