1
|
Iitani K, Nakaya M, Tomono T, Toma K, Arakawa T, Tsuchido Y, Mitsubayashi K, Takeda N. Enzyme-embedded electrospun fiber sensor of hydrophilic polymer for fluorometric ethanol gas imaging in vapor phase. Biosens Bioelectron 2022; 213:114453. [PMID: 35728364 DOI: 10.1016/j.bios.2022.114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Non-invasive measurement of volatile organic compounds (VOCs) emitted from living organisms is a powerful technique for diagnosing health conditions or diseases in humans. Bio-based gas sensors are suitable for the sensitive and selective measurement of a target VOC from a complex mixture of VOCs. Conventional bio-based sensors are normally prepared as wet-type probes to maintain proteins such as enzymes in a stable state, resulting in limitations in the commercialization of sensors, their operating environment, and performance. In this study, we present an enzyme-based fluorometric electrospun fiber sensor (eFES) mesh as a gas-phase biosensor in dry form. The eFES mesh targeting ethanol was fabricated by simple one-step electrospinning of polyvinyl alcohol with an alcohol dehydrogenase and an oxidized form of nicotinamide adenine dinucleotide. The enzyme embedded in the eFES mesh worked actively in a dry state without pretreatment. Substrate specificity was also maintained, and the sensor responded well to ethanol with a sufficient dynamic range. Adjustment of the pH and coenzyme quantity in the eFES mesh also affected enzyme activity. The dry-form biosensor-eFES mesh-will open a new direction for gas-phase biosensors because of its remarkable performance and simple fabrication, which is advantageous for commercialization.
Collapse
Affiliation(s)
- Kenta Iitani
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Misa Nakaya
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Tsubomi Tomono
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Koji Toma
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takahiro Arakawa
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yuji Tsuchido
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
2
|
Iitani K, Ramamurthy SS, Ge X, Rao G. Transdermal sensing: in-situ non-invasive techniques for monitoring of human biochemical status. Curr Opin Biotechnol 2021; 71:198-205. [PMID: 34455345 DOI: 10.1016/j.copbio.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Improving life expectancy necessitates prevention and early diagnosis of any disease state based on active self-monitoring of symptoms and longitudinal biochemical profiling. Non-invasive and continuous measurement of molecular biomarkers that reflect metabolism and health must however be established to realize this plan. Human samples non-invasively obtained via the skin are suitable in this context for in-situ biochemical monitoring. We present a brief classification of transdermal sampling in aqueous and gaseous phases and then introduce a new generation of transdermal monitoring devices for rapid and accurate assessment of important parameters. Finally, we have summarized the diversity of body-wide skin characteristics that have possible effects for transdermal sampling. Because of its passive nature, in-situ biochemical monitoring via transdermal sampling will potentially lead to a greater understanding of important biochemical markers and their temporal variation.
Collapse
Affiliation(s)
- Kenta Iitani
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Sai Sathish Ramamurthy
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA; STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh 515134, India
| | - Xudong Ge
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA
| | - Govind Rao
- Center for Advanced Sensor Technology (CAST), Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250 USA.
| |
Collapse
|
3
|
Vasilescu A, Hrinczenko B, Swain GM, Peteu SF. Exhaled breath biomarker sensing. Biosens Bioelectron 2021; 182:113193. [PMID: 33799031 DOI: 10.1016/j.bios.2021.113193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
This goal of this minireview is to introduce the reader to the area of research concerned with exhaled breath analysis for the purpose of detecting abnormal levels of physiologically-relevant chemical markers reflective of respiratory diseases. Two main two groups of sensing methods are reviewed: mass spectrometry and (bio)sensors. The discussion focuses on biosensor applications for EB and EBC analyses, which are presented in detail. The review finishes with conclusions and future perspectives, including recommendations for future near-term and long-term development of EBC biomarker sensing.
Collapse
Affiliation(s)
| | - Borys Hrinczenko
- Division of Hematology & Oncology, Breslin Cancer Center, Michigan State University, USA
| | - Greg M Swain
- Department of Chemistry, Michigan State University, USA; Neuroscience Program, Michigan State University, USA
| | - Serban F Peteu
- Department of Chemistry, Michigan State University, USA.
| |
Collapse
|
4
|
External ears for non-invasive and stable monitoring of volatile organic compounds in human blood. Sci Rep 2021; 11:10415. [PMID: 34112816 PMCID: PMC8192764 DOI: 10.1038/s41598-021-90146-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
Volatile organic compounds (VOCs) released through skin (transcutaneous gas) has been increasing in importance for the continuous and real-time assessment of diseases or metabolisms. For stable monitoring of transcutaneous gas, finding a body part with little interference on the measurement is essential. In this study, we have investigated the possibility of external ears for stable and real-time measurement of ethanol vapour by developing a monitoring system that consisted with an over-ear gas collection cell and a biochemical gas sensor (bio-sniffer). The high sensitivity with the broad dynamic range (26 ppb–554 ppm), the high selectivity to ethanol, and the capability of the continuous measurement of the monitoring system uncovered three important characteristics of external ear-derived ethanol with alcohol intake for the first time: there is little interference from sweat glands to a sensor signal at the external ear; similar temporal change in ethanol concentration to that of breath with delayed peak time (avg. 13 min); relatively high concentration of ethanol relative to other parts of a body (external ear-derived ethanol:breath ethanol = 1:590). These features indicated the suitability of external ears for non-invasive monitoring of blood VOCs.
Collapse
|
5
|
Abstract
Volatolomics allows us to elucidate cell metabolic processes in real time. In particular, a volatile organic compound (VOC) excreted from our bodies may be specific for a certain disease, such that measuring this VOC may afford a simple, fast, accessible and safe diagnostic approach. Yet, finding the optimal endogenous volatile marker specific to a pathology is non-trivial because of interlaboratory disparities in sample preparation and analysis, as well as high interindividual variability. These limit the sensitivity and specificity of volatolomics and its applications in biological and clinical fields but have motivated the development of induced volatolomics. This approach aims to overcome issues by measuring VOCs that result not from an endogenous metabolite but, rather, from the pathogen-specific or metabolic-specific enzymatic metabolism of an exogenous biological or chemical probe. In this Review, we introduce volatile-compound-based probes and discuss how they can be exploited to detect and discriminate pathogenic infections, to assess organ function and to diagnose and monitor cancers in real time. We focus on cases in which labelled probes have informed us about metabolic processes and consider the potential and drawbacks of the probes for clinical trials. Beyond diagnostics, VOC-based probes may also be effective tools to explore biological processes more generally.
Collapse
|