1
|
Bai H, Hu J, Liu T, Wan L, Dong C, Luo D, Li F, Yuan Z, Tang Y, Chen T, Wang S, Gou H, Zhou Y, Ying B, Huang J, Hu WW. A sample-to-answer digital microfluidic multiplexed PCR system for syndromic pathogen detection in respiratory tract infection. LAB ON A CHIP 2025; 25:1552-1564. [PMID: 39905852 DOI: 10.1039/d4lc00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Timely identification of infectious pathogens is crucial for the accurate diagnosis, management, and treatment of syndromic respiratory diseases. Nevertheless, the implementation of rapid, precise, and automated point-of-care testing (POCT) remains a significant challenge. This study introduces an advanced digital microfluidic (DMF) POCT testing system designed for the rapid molecular syndromic testing of multiple respiratory pathogens from a single untreated sample. The system seamlessly integrates magnetic beads-based nucleic acid extraction, PCR amplification, and real-time fluorescence analysis in an automatic run, facilitating sample-to-answer detection within 80 min. It accommodates various sample types, including nasopharyngeal swabs, oropharyngeal swabs, bronchoalveolar lavage fluid, and sputum. A facile sample loading method has been developed to reduce hands-on time to less than 1 min. The system exhibits high sensitivity (200-628 copies per mL) for 15 pathogens and has the capacity for up to 32 multiplexed tests per run. Validation with 255 clinical samples confirms its high sensitivity and specificity. The DMF-based system significantly reduces manual labour, enhances rapid POCT for respiratory infections, and, with optimized manufacturing processes, lowers costs for large-scale production. The system can be applied and improve clinical management near the patients as well as in resource-limited settings.
Collapse
Affiliation(s)
- Hao Bai
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jie Hu
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tangyuheng Liu
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Wan
- Livzon Diagnostics Inc., Zhuhai, 519000, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410000, China
| | - Cheng Dong
- School of Intelligent Systems Science and Engineering/JNU-Industry School of Artificial Intelligence, Jinan University, Zhuhai, 519000, China
| | - Dasheng Luo
- Digifluidic Biotech Ltd., Zhuhai, 519000, China
| | - Fei Li
- Digifluidic Biotech Ltd., Zhuhai, 519000, China
| | | | - Yunmei Tang
- Livzon Diagnostics Inc., Zhuhai, 519000, China
| | | | - Shan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410000, China
| | - Hongna Gou
- Livzon Diagnostics Inc., Zhuhai, 519000, China
| | - Yongzhao Zhou
- Department of Integrated Care Management Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin Huang
- Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Precision Medicine Translational Research Center (PMTRC), West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Ajiboye IO, Banerjee RK. Surface Reaction of Electroosmotic Flow-Driven Free Antigens With Immobilized Magnetic-Microbeads-Tagged-Antibodies in Microchannels. J Biomech Eng 2024; 146:091003. [PMID: 38511298 DOI: 10.1115/1.4065138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Immunoassays based on reactions between target pathogen (antigen; Ag) and antibody (Ab) are frequently used for Ag detection. An external magnetic field was used to immobilize magnetic microbeads-tagged-antibodies (mMB-Ab) on the surface of a microchannel in the capture zone. The mMB-Ab was subsequently used for Ag detection. The objective of this numerical study, with experimental validation, is to assess the surface reaction between mMB-Ab and Ag in the presence of electro-osmotic flow (EOF). First, immobilization of mMB-Ab complex in the wall of the capture zone was achieved. Subsequently, the Ag was transported by EOF toward the capture zone to bind with the immobilized mMB-Ab. Lastly, mMB-Ab:Ag complex was formed and immobilized in the capture zone. A finite volume solver was used to implement the above steps. The surface reaction between the mMB-Ab and Ag was investigated in the presence of electric fields (E): 150 V/cm-450 V/cm and Ag concentrations: 0.001 M-1000 M. The depletion of mMB-Ab increases with time as the E decreases. Furthermore, as the concentration of Ag decreases, the depletion of mMB-Ab increases with time. These results quantify the detection of Ag using the EOF device; thus, signifying its potential for rapid throughput screening of Ag. This platform technology can lead to the development of portable devices for the detection of target cells, pathogens, and biomolecules for testing water systems, biological fluids, and biochemicals.
Collapse
Affiliation(s)
- Israel O Ajiboye
- Department of Mechanical and Materials Engineering, University of Cincinnati, Rhodes Hall 601, 2851 Woodside Drive, Cincinnati, OH 45219
| | - Rupak K Banerjee
- Department of Biomedical Engineering, University of Cincinnati, Veterans Affairs Medical Center, Rhodes Hall 593, 2851 Woodside Drive, Cincinnati, OH 45219
| |
Collapse
|
3
|
Yang Q, Zhang Z, Lin J, Zhu B, Yu R, Li X, Su B, Zhao B. Multilayer track-etched membrane-based electroosmotic pump for drug delivery. Electrophoresis 2024; 45:433-441. [PMID: 38161243 DOI: 10.1002/elps.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Herein, we report an electroosmotic pump (EOP) based on a multilayer track-etched polycarbonate (PC) membrane. A remarkable increase of maximum backpressure (198.2-2400 mmH2 O) of a fundamental pump unit was obtained at 0.8 mA, when the number of PC membranes was increased from 1 to 10. Meanwhile, the corresponding flow rate was increased from 80.3 to 111.7 µL/min. Furthermore, multiple pump units were assembled in series to obtain a multistage EOP. For a three-stage EOP (EOP-3), the operating voltage and power can be decreased significantly by 52%-72% under different driving currents, with a minimum power of 26.7 µW. Thus, EOP-3 can run stably over 35 h at a pulse current of 0.1 mA without the generation of gas bubbles. The pump was further integrated into a miniature device, which was successfully used to decrease the blood glucose level of diabetic rats by subcutaneous delivery of fast-acting insulin. This work brings a facile and efficient strategy to enhance the backpressure and lower the operating voltage and power of EOPs, which may find promising applications in drug delivery.
Collapse
Affiliation(s)
- Qian Yang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, P. R. China
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou, P. R. China
| | - Zebo Zhang
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou, P. R. China
| | - Junshu Lin
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou, P. R. China
| | - Boyu Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Rongying Yu
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou, P. R. China
| | - Xinru Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Bin Su
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Bo Zhao
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
4
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
5
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
6
|
Sun X, Shi J, Men X, Li Y, Qu H, Chang Y, Hu J, Yan X, Guo W, Sun C, Duan X. Microchip gas chromatography column using magnetic beads coated with polydimethylsiloxane and metal organic frameworks. J Chromatogr A 2023; 1705:464188. [PMID: 37423078 DOI: 10.1016/j.chroma.2023.464188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Micro gas chromatography (μGC) using microfabricated silicon columns has been developed in response to the requirement for portable on-site gas analysis. Although different stationary phases have been developed, repeatable and reliable surface coatings in these rather small microcolumns remains a challenge. Herein, a new stationary phase coating strategy using magnetic beads (MBs) as carriers for micro column is presented. MBs modified with organopolysiloxane (MBs@OV-1) and a metal organic framework (MBs@HKUST-1) are deposited in on-chip microcolumns assisted with a magnetic field with an optimized modification process. MBs@OV-1 column showed a minimum HETP of 0.074 cm (1351 plates/m) of 62 cm/s. Mixtures of volatile organic compounds are successfully separated using MBs carried stationary phase which demonstrates that this technique has good chromatographic column efficiency. This method not only provides a novel coating process, washing and characterization of the stationary phases but also establishes a straightforward strategy for testing new absorbent materials for μGC systems.
Collapse
Affiliation(s)
- Xueyou Sun
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Jingwen Shi
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xiangdong Men
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yanna Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hemi Qu
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Ye Chang
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Jizhou Hu
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xu Yan
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wenlan Guo
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chen Sun
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- A State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Wang Y, Wang C, Zhou Z, Si J, Li S, Zeng Y, Deng Y, Chen Z. Advances in Simple, Rapid, and Contamination-Free Instantaneous Nucleic Acid Devices for Pathogen Detection. BIOSENSORS 2023; 13:732. [PMID: 37504131 PMCID: PMC10377012 DOI: 10.3390/bios13070732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Pathogenic pathogens invade the human body through various pathways, causing damage to host cells, tissues, and their functions, ultimately leading to the development of diseases and posing a threat to human health. The rapid and accurate detection of pathogenic pathogens in humans is crucial and pressing. Nucleic acid detection offers advantages such as higher sensitivity, accuracy, and specificity compared to antibody and antigen detection methods. However, conventional nucleic acid testing is time-consuming, labor-intensive, and requires sophisticated equipment and specialized medical personnel. Therefore, this review focuses on advanced nucleic acid testing systems that aim to address the issues of testing time, portability, degree of automation, and cross-contamination. These systems include extraction-free rapid nucleic acid testing, fully automated extraction, amplification, and detection, as well as fully enclosed testing and commercial nucleic acid testing equipment. Additionally, the biochemical methods used for extraction, amplification, and detection in nucleic acid testing are briefly described. We hope that this review will inspire further research and the development of more suitable extraction-free reagents and fully automated testing devices for rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Yue Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Chengming Wang
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou 412000, China
| | - Zepeng Zhou
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Jiajia Si
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Yezhan Zeng
- School of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
8
|
Wang J, Jiang H, Pan L, Gu X, Xiao C, Liu P, Tang Y, Fang J, Li X, Lu C. Rapid on-site nucleic acid testing: On-chip sample preparation, amplification, and detection, and their integration into all-in-one systems. Front Bioeng Biotechnol 2023; 11:1020430. [PMID: 36815884 PMCID: PMC9930993 DOI: 10.3389/fbioe.2023.1020430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
As nucleic acid testing is playing a vital role in increasingly many research fields, the need for rapid on-site testing methods is also increasing. The test procedure often consists of three steps: Sample preparation, amplification, and detection. This review covers recent advances in on-chip methods for each of these three steps and explains the principles underlying related methods. The sample preparation process is further divided into cell lysis and nucleic acid purification, and methods for the integration of these two steps on a single chip are discussed. Under amplification, on-chip studies based on PCR and isothermal amplification are covered. Three isothermal amplification methods reported to have good resistance to PCR inhibitors are selected for discussion due to their potential for use in direct amplification. Chip designs and novel strategies employed to achieve rapid extraction/amplification with satisfactory efficiency are discussed. Four detection methods providing rapid responses (fluorescent, optical, and electrochemical detection methods, plus lateral flow assay) are evaluated for their potential in rapid on-site detection. In the final section, we discuss strategies to improve the speed of the entire procedure and to integrate all three steps onto a single chip; we also comment on recent advances, and on obstacles to reducing the cost of chip manufacture and achieving mass production. We conclude that future trends will focus on effective nucleic acid extraction via combined methods and direct amplification via isothermal methods.
Collapse
Affiliation(s)
- Jingwen Wang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Leiming Pan
- Zhejiang Hongzheng Testing Co., Ltd., Ningbo, China
| | - Xiuying Gu
- Zhejiang Gongzheng Testing Center Co., Ltd., Hangzhou, China
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Pengpeng Liu
- Key Laboratory of Biosafety detection for Zhejiang Market Regulation, Zhejiang Fangyuan Testing Group LO.T, Hangzhou, China
| | - Yulong Tang
- Hangzhou Tiannie Technology Co., Ltd., Hangzhou, China
| | - Jiehong Fang
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoqian Li
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenze Lu
- Key Laboratory of Specialty Agri-products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
9
|
Kumar S, Kharb A, Vazirani A, Chauhan RS, Pramanik G, Sengupta M, Ghosh S. Nucleic acid extraction from complex biofluid using toothpick-actuated over-the-counter medical-grade cotton. Bioorg Med Chem 2022; 73:117009. [PMID: 36126446 DOI: 10.1016/j.bmc.2022.117009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Nucleic acid amplification technique (NAAT)-assisted detection is the primary intervention for pathogen molecular diagnostics. However, NAATs such as quantitative real-time polymerase chain reaction (qPCR) require prior purification or extraction of target nucleic acid from the sample of interest since the latter often contains polymerase inhibitors. Similarly, genetic disease screening is also reliant on the successful extraction of pure patient genomic DNA from the clinical sample. However, such extraction techniques traditionally utilize spin-column techniques that in turn require centralized high-speed centrifuges. This hinders any potential deployment of qPCR- or PCR-like NAAT methods in resource-constrained settings. The development of instrument-free nucleic acid extraction methods, especially those utilizing readily available materials would be of great interest and benefit to NAAT-mediated molecular diagnosis workflows in resource-constrained settings. In this report, we screened medical-grade cotton, a readily available over-the-counter biomaterial to extract genomic DNA (gDNA) spiked in 30 %, 45 %, and 60 % serum or cell lysate. The extraction was carried out in a completely instrument-free manner using cotton and a sterilized toothpick and was completed in 30 min (with using chaotropic salt) or 10 min (without using chaotropic salt). The quality of the extracted DNA was then probed using PCR followed by agarose gel analysis for preliminary validation of the study. The qPCR experiments then quantitatively established the extraction efficiency (0.3-27 %, depending on serum composition). Besides, percent similarity score obtained from the Sanger sequencing experiments probed the feasibility of extracted DNA towards polymerase amplification with fluorescent nucleotide incorporation. Overall, our method demonstrated that DNA extraction could be performed utilizing toothpick-mounted cotton both with or without using a chaotropic salt, albeit with a difference in the quality of the extracted DNA.
Collapse
Affiliation(s)
- Shrawan Kumar
- Department of Chemistry, Bennett University, India; Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Anjali Kharb
- Department of Biotechnology, Bennett University, India
| | - Aman Vazirani
- Department of Biotechnology, Bennett University, India
| | | | - Goutam Pramanik
- UGC-DAE CSR, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Souradyuti Ghosh
- Department of Chemistry, Bennett University, India; Department of Biotechnology, Bennett University, India; Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India; UGC-DAE CSR, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India.
| |
Collapse
|
10
|
Lee K, Tripathi A. An investigation into simplifying total RNA extraction with minimal equipment using a low volume, electrokinetically driven microfluidic protocol. BIOMICROFLUIDICS 2022; 16:044107. [PMID: 35992642 PMCID: PMC9385220 DOI: 10.1063/5.0096684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Current methods for total RNA extraction are time-consuming and require several hands-on steps and specialized equipment. Microfluidic devices can offer the opportunity to reduce the number of hands-on steps, decrease the volumes of reagents required for purification, and make extraction high throughput. Here, we investigated the translation of a high volume magnetic bead-based total RNA extraction method (from human whole blood) onto a low input volume microfluidic device. Our results first show that RNA integrity is maintained when the reagent volumes are scaled down by a factor of 22 and the wash buffers are combined 1:1. With our microfluidic method, the number of wash steps can be reduced from four to one. Thus, the time to complete RNA extraction can be reduced from 2 h to 40 min. These manipulations to the conventional protocol yielded RNA amplifiable within 40 cycles of reverse transcription quantitative PCR (RT-qPCR) when using the microfluidic device to simplify the wash steps. To improve the purification of the RNA during the bead transport through the microchannel, we also investigated the effect of a synergetic application of the electrokinetic flow. Our results show that DNase I and other contaminants surrounding the beads get washed away more effectively via electrophoretic transport. Most notably, RNA adsorption on the beads is strong enough to counter electrophoretically-driven desorption. In all, our work opens new ways to extract high-quality total RNA rapidly and simply from a small quantity of blood, making the process of RNA extraction more accessible.
Collapse
Affiliation(s)
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
11
|
Zhao X, Li Y, Sun R, Fan Y, Mu X, Wang Y, Shi C, Ma C. Electrical potential-assisted DNA-RNA hybridization for rapid microRNA extraction. Anal Bioanal Chem 2022; 414:3529-3539. [PMID: 35229173 DOI: 10.1007/s00216-022-03979-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023]
Abstract
Analysis of microRNAs (miRNAs) is important in cancer diagnostics and therapy. Conventional methods used to extract miRNA for analysis are generally time-consuming. A novel approach for rapid and sensitive extraction of miRNAs is urgently need for clinical applications. Herein, a novel strategy based on electrical potential-assisted DNA-RNA hybridization was designed for miRNA extraction. The entire extraction process was accomplished in approximately 3 min, which is much shorter than the commercial adsorption column method, at more than 60 min, or the TRIzol method, at more than 90 min. Additionally, the method offered the advantages of simplicity and specificity during the extraction process by electrical potential-assisted hybridization of single-stranded DNA and RNA. Taking let-7a as an example, satisfactory results were achieved for miRNA extraction in serum, demonstrating the applicability in miRNA nucleic acid amplification.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Ritong Sun
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, the Clinical Laboratory Department of the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Shandong, 266042, Qingdao, People's Republic of China.
| |
Collapse
|
12
|
Schneider L, Fraser M, Tripathi A. Integrated magneto-electrophoresis microfluidic chip purification on library preparation device for preimplantation genetic testing for aneuploidy detection. RSC Adv 2021; 11:14459-14474. [PMID: 35423999 PMCID: PMC8697746 DOI: 10.1039/d1ra01732b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Next generation sequencing (NGS) technology has revolutionized the field of personalized medicine through providing patient specific diagnostic information on a nucleic acid level. A key bottleneck in the NGS workflow is the preparation of nucleic acids for sequencing, or library preparation. One approach to overcoming this bottleneck on time and resources is through automating library preparation as much as possible from the stage of DNA extraction to a sequence-ready sample. Here, we have integrated microscale purification and macroscale PCR amplification to create an automated platform to replace manual DNA library preparation and magnetic bead-based cleanup steps. This microfluidic chip integrates magnetic bead transport and electrokinetic flow to remove unbound adapter dimers and other impurities from samples. We incorporate this method to develop an automated NGS DNA library preparation device that also includes macro- and microfluidic reagent movement and mixing and a thermoelectric cooler for controlled capillary heating and cooling. We greatly reduce the hands-on time, amount of pipetting required, and volumes of reagents needed as we test the feasibility of the platform on the clinically important diagnostic field of preimplantation genetic testing for aneuploidy (PGT-A). We prepared euploid and aneuploid five cell samples for sequencing and found our results were accurate for the cell samples with a sequencing quality equivalent to the standard of the DNA libraries prepared manually. Our device platform utilizes concepts such as: magneto-electrophoresis, integrated capillary PCR, and automated sample loading and unloading onto a microfluidic chip.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University 182 Hope Street Providence RI 02912 USA
| | - Michelle Fraser
- PerkinElmer Health Sciences (Australia) Thebarton South Australia 5031 Australia
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University 182 Hope Street Providence RI 02912 USA
| |
Collapse
|
13
|
Schneider L, Cui F, Tripathi A. Isolation of target DNA using synergistic magnetic bead transport and electrokinetic flow. BIOMICROFLUIDICS 2021; 15:024104. [PMID: 33763161 PMCID: PMC7972524 DOI: 10.1063/5.0045307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/07/2021] [Indexed: 05/13/2023]
Abstract
The advent and dissemination of next-generation sequencing (NGS) technologies such as Illumina's sequencing platforms has brought forth vast reductions in the cost, time, and technical difficulties associated with DNA and RNA sequencing. Despite this trend, the workflow required to generate nucleic acid libraries for sequencing remains time-consuming and laborious. The following research proposes a method for simplifying and streamlining this process by replacing the manual washing steps of the common magnetic bead-based cleanup with a novel microfluidic method by integrating magnetic separation and electrokinetic purification (MSEP). Requiring no pumps, pipette mixing, vortexing, or centrifugation, MSEP relies on selective adsorption of target DNA onto the magnetic beads with subsequent transport of beads through a microchannel undergoing an antiparallel electroosmotic flow. The synergetic flow conditions were optimized using a simple electrohydrodynamic flow model. This work demonstrates that MSEP is as effective in eliminating adapter-dimers from the post-ligation library mix as the manual method while also greatly reducing the hands-on time and amount of pipetting required. Although MSEP has been applied specifically toward NGS library preparation at this time, it has the potential to be adapted and employed for any bead-based separation scheme, namely, solid phase extraction, sequence-specific hybridization, and immunoprecipitation on a microscale.
Collapse
Affiliation(s)
- Lindsay Schneider
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Francis Cui
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering, Brown University, 182 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
14
|
Yang BH, Liu BS, Chen ZL. DNA Extraction with TRIzol Reagent Using a Silica Column. ANAL SCI 2020; 37:1033-1037. [PMID: 33250452 DOI: 10.2116/analsci.20p361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate used for the extraction of RNA, DNA and proteins from tissues or cells. However, few studies have described its application to DNA extraction due to its time-consuming procedure. We present a TRIzol-modified method of extracting DNA from tissues using the TRIzol reagent and a silica column, which requires only one-third of the time required for the classic extraction procedure. Spectrophotometric analysis showed that the 260/280 and 260/230 nm optical density ratio of the DNA extracted using the TRIzol-modified method is ideal and equal to that obtained by the classic method and commercial DNAiso methods. The DNA extracted by the TRIzol-modified method had the same performance in a restriction enzyme digestion and quantitative PCR as that extracted using the classic method. Using the TRIzol-modified method saves time, simplifies the DNA extraction procedure, and facilitates various molecular biology assays.
Collapse
Affiliation(s)
- Bo-Han Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| | - Bao-Shan Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| | - Ze-Liang Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University
| |
Collapse
|
15
|
Nucleic acid extraction: Fundamentals of sample preparation methodologies, current advancements, and future endeavors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115985] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|