1
|
Liu Y, Zhang L, Cai H, Qu X, Chang J, Waterhouse GIN, Lu S. Biomass-derived carbon dots with pharmacological activity for biomedicine: Recent advances and future perspectives. Sci Bull (Beijing) 2024; 69:3127-3149. [PMID: 39183109 DOI: 10.1016/j.scib.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Carbon dots (CDs), a type of nanoparticle with excellent optical properties, good biocompatibility, and small size, are finding increasing application across the fields of biology and biomedicine. In recent years, biomass-derived CDs with pharmacological activity (BP-CDs) derived from herbal medicines (HMs), HMs extracts and other natural products with demonstrated pharmaceutical activity have attracted particular attention. Herein, we review recent advances in the development of BP-CDs, covering the selection of biomass precursors, different methods used for the synthesis of BP-CDs from natural sources, and the purification of BP-CDs. Additionally, we summarize the many remarkable properties of BP-CDs including optical properties, biocompatibility and pharmaceutical efficacy. Moreover, the antibacterial, antiviral, anticancer, biosensing, bioimaging, and other applications of BP-CDs are reviewed. Thereafter, we discuss the advantages and disadvantages of BP-CDs and Western drug-derived CDs, highlighting the excellent performance of BP-CDs. Finally, based on the current state of research on BP-CDs, we suggest several aspects of BP-CDs that urgently need to be addressed and identify directions that should be pursued in the future. This comprehensive review on BP-CDs is expected to guide the precise design, preparation, and future development of BP-CDs, thereby advancing the application of BP-CDs in biomedicine.
Collapse
Affiliation(s)
- Yue Liu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Zhang
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Huijuan Cai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaoli Qu
- Erythrocyte Biology Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | | | - Siyu Lu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Zhao X, Niu Y, Zhao C, Li Z, Li K, Qin X. Simplified Synthesis of Poly(ethyleneimine)-Modified Silica Particles and Their Application in Oligosaccharide Isolation Methods. Int J Mol Sci 2024; 25:9465. [PMID: 39273411 PMCID: PMC11395661 DOI: 10.3390/ijms25179465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
There are great challenges in the field of natural product isolation and purification and in the pharmacological study of oligosaccharide monomers. And these isolation and purification processes are still universal problems in the study of natural products (NPs), traditional Chinese medicine (TCM), omics, etc. The same polymer-modified materials designed for the special separation of oligosaccharides, named Sil-epoxy-PEI and Sil-chloropropyl-PEI, were synthesized via two different methods and characterized by scanning electron microscopy combined with energy spectrum analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential as well as surface area analysis, etc. Several nucleotide/nucleoside molecules with different polarities and selectivities were successfully isolated in our laboratory using stainless-steel columns filled with the synthesized material. In addition, the separation of saccharide probes and oligosaccharides mixtures in water extracts of Morinda officinalis were compared in HILIC mode. The results showed that the resolution of separations for the representative analytes of the Sil-epoxy-PEI column was higher than for the Sil-chloropropyl-PEI column, and the developed stationary phase exhibited improved performance compared to hydrothermal carbon, amide columns and other HILIC materials previously reported.
Collapse
Affiliation(s)
- Xingyun Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Yifan Niu
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Chengxiao Zhao
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
3
|
Zhang P, Hu Y, Liu K, Sun Y, He L, Zhao W. Hydrophilic interaction chromatographic evaluation of zwitterionic polymer grafted silica gel via multiple binding sites. J Sep Sci 2024; 47:e2400065. [PMID: 39054584 DOI: 10.1002/jssc.202400065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
A novel zwitterionic polymer grafted silica stationary phase, Sil-PZIC, was prepared by bonding poly(ethylene maleic anhydride) molecules on the surface of silica via multiple binding sites, followed by ammonolysis of maleic anhydride through a nucleophilic substitution reaction with ethylenediamine. The stationary phase was characterized by solid-state 13C nuclear magnetic resonance, zeta potential, and elemental analysis and the results show the successful encapsulation of zwitterionic polymer on the surface of silica. The chromatographic performance of Sil-PZIC was investigated by using nucleosides and nucleic bases as test analytes The variation of retention and separation performance of these model compounds were investigated by varying the chromatographic conditions such as the components of mobile phase, salt concentration, and pH. The results show that the retention of the Sil-PZIC phase was dominated by a hydrophilic partitioning mechanism accompanied by secondary interactions such as electrostatic and hydrogen bonding. In addition, saccharides and Amadori compounds were also well separated on the Sil-PZIC, indicating that the Sil-PZIC column has potential application for separation of the polar compound.
Collapse
Affiliation(s)
- Pengcheng Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yongxing Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Kunling Liu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Yaming Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, P. R. China
| |
Collapse
|
4
|
Wei W, Zhao L, Si T, Zhang Y, Chen W, Tang S. Green synthesis of N-rich carbon dot-derived crosslinked covalent organic nanomaterial for multipurpose chromatographic applications. Mikrochim Acta 2024; 191:345. [PMID: 38802617 DOI: 10.1007/s00604-024-06435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.
Collapse
Affiliation(s)
- Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Tiantian Si
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
5
|
Yang Y, Li Y, Long Z, Han L, Quan K, Chen J, Liu X, Qiu H. A C4-modified bipyridinium multi-mode stationary phase for reversed phase, hydrophilic interaction and ion exchange chromatography. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6286-6293. [PMID: 37965679 DOI: 10.1039/d3ay01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A novel C4-modified bipyridinium stationary phase (Sil-DPC4) was prepared and characterized by elemental analysis (EA) and Fourier transform infrared spectrometry (FT-IR) and further investigated for multi-mode liquid chromatography. The chromatographic performances of Sil-DPC4 were evaluated by reversed-phase chromatography using polycyclic aromatic hydrocarbons (PAHs), phenylamines and phenols, hydrophilic interaction chromatography using nucleosides and nucleobases, and ion exchange chromatography using inorganic ions and organic ions. The effects of the acetonitrile content, salt concentration and pH value of the mobile phase on the retention of Sil-DPC4 were also investigated. Sil-DPC4 showed multiple retention mechanisms including π-π, hydrophobic and electrostatic interactions for PAHs, phenylamines and phenols compared with a dipyridine modified silica stationary phase (Sil-DP) and C18 in RPLC, faster separation for nucleosides and nucleobases compared with Sil-DP, and higher hydrophilicity than HILIC in HILIC, and stronger retention and better separation ability for inorganic ions and organic ions in comparison to Sil-DP in IEC. Besides, Sil-DPC4 was used successfully to detect iodide in artificial seawater and had the potential to analyze radionuclide iodine-131 in seawater. In conclusion, multiple retention mechanisms of Sil-DPC4 could make it have potential applications in complex samples.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Zelong Long
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi 830000, China
| | - Lingling Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
6
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Yang Y, Wang J, Liu R, Quan K, Chen J, Liu X, Qiu H. Grafting of Tetraphenylethylene on Silica Surface, Characterizations, and Their Chromatographic Performance as Reversed-Phase Stationary Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14400-14408. [PMID: 36350796 DOI: 10.1021/acs.langmuir.2c02709] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surface modification is an effective way to functionalize the materials so as to get some special properties. Tetraphenylethylene (TPE) has been widely investigated as a well-known reagent which has the nature of aggregation-induced emission (AIE), but has never been reported in the liquid chromatography stationary phase. In this work, TPE-grafted silica (Sil-TPE) was obtained successfully using the derivative of 1-(4-hydroxyphenyl)-1,2,2-triphenylethylene as a ligand, and then characterized by elemental analysis, Fourier transform infrared spectra, thermogravimetric analysis, and so forth. Laser scanning confocal microscopy images reflected the AIE phenomenon of grafted TPE because the internal vibration and rotation of TPE molecules were restrained in the confined silica space. The contact angle test showed superhydrophobic properties of Sil-TPE. In order to understand thoroughly the mechanism of chromatographic performance and retention behavior for Sil-TPE, Tanaka test mixture, alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), and phenols were separated. This reveals that Sil-TPE has strong aromaticity and certain shape selectivity, especially, has excellent separation performance for PAHs and phenols. The thermodynamic properties and repeatability of Sil-TPE were further studied, which showed the stability of Sil-TPE. This work shows that TPE can be successfully grafted on silica surface and it has the potential to be a new kind of promising stationary phases in the future.
Collapse
Affiliation(s)
- Yali Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou730070, China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Juanjuan Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Ruirui Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources; Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining810008, China
| | - Kaijun Quan
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Xiuhui Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou730070, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| |
Collapse
|
8
|
Effect of spacer alkyl chain length on retention among three imidazolium stationary phases under various modes in high performance liquid chromatography. J Chromatogr A 2022; 1685:463646. [DOI: 10.1016/j.chroma.2022.463646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
9
|
Xu S, Liu H, Long A, Feng S, Chen CP. In-situ synthesis of carbon dots embedded wrinkled-mesoporous silica microspheres for efficiently capturing and monitoring organochlorine pesticides from water and fruit juice. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
In-situ carbonizing of coal pitch on the surface of silica sphere as quasi-graphitized carbon stationary phase for liquid chromatography. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Recent advances of innovative and high-efficiency stationary phases for chromatographic separations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Guo Y. A Survey of Polar Stationary Phases for Hydrophilic Interaction Chromatography and Recent Progress in Understanding Retention and Selectivity. Biomed Chromatogr 2022; 36:e5332. [PMID: 35001408 DOI: 10.1002/bmc.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022]
Abstract
Various polar stationary phases have become available for hydrophilic interaction chromatography (HILIC) and help drive continuous applications in biomedical, environmental and pharmaceutical areas in the past decade. Although the stationary phases for HILIC have been reviewed previously, it is an appropriate time to take another look at the progresses during the past five years. The current review provides an overview of the polar stationary phases commercially available for HILIC applications in an effort to assist scientists in selecting suitable columns. New types of stationary phase that were published in literature in the past five years are summarized and discussed. The trend in stationary phase research and development is also highlighted. Of particular interest is the experimental evidence for direct interactions of polar analytes with the ligands of the stationary phases under HILIC conditions. In addition, two different approaches have been developed to delineate the relative significance of the partitioning and adsorption mechanisms in HILIC, representing an important advancement in our understanding of the retention mechanisms in HILIC.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, New Jersey, USA
| |
Collapse
|
14
|
Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Wu Q, Hou X, Lv H, Li H, Zhao L, Qiu H. Synthesis of octadecylamine-derived carbon dots and application in reversed phase/hydrophilic interaction liquid chromatography. J Chromatogr A 2021; 1656:462548. [PMID: 34537657 DOI: 10.1016/j.chroma.2021.462548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In order to make up for the deficiencies of traditional C18 column for separating strong polar compounds, combined with the good hydrophilicity of carbon dots (CDs), novel octadecylamine-derived CDs denoted as C18-CDs are designed, synthesized and applied in RPLC/HILIC mixed-mode chromatography with good separation performance towards both hydrophobic and hydrophilic compounds. C18-CDs are synthesized by simple one-step solvothermal method using octadecylamine and citric acid as carbon sources, and C18-CDs with proper polarity are collected through column chromatography purification. This C18-CDs decorated silica column showed good separation performance for polycyclic aromatic hydrocarbons and alkylbenzenes under RPLC mode. Hydrophilic compounds including sulfonamides, nucleosides and nucleobases also achieved good resolution in HILIC mode. Hydrophobic and π-π stacking interactions play major retaining roles in RPLC, whereas hydrophilic partitioning and hydrogen bond interactions turn to the main retention interactions under HILIC mode. This C18-CDs/SiO2 column was applied for the fast detection of chloramphenicol in milk without complex sample pretreatment process. Quantitative relationship between the peak area and the concentration of chloramphenicol was established with linear equation of A = 1677c + 173. Satisfactory spiked recoveries in the range of 94.1-109.0% were obtained. This work not only proposes a simple method for improving the polarity of C18 column through forming octadecane into CDs, but also provides novel CDs with certain hydrophobicity/hydrophily suitable for mixed-mode chromatography.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao 266109, China.
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Haitao Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700, Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hongdeng Qiu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
17
|
Jiang D, Chen J, Guan M, Qiu H. Octadecylimidazolium ionic liquids-functionalized carbon dots and their precursor co-immobilized silica as hydrophobic chromatographic stationary phase with enhanced shape selectivity. Talanta 2021; 233:122513. [PMID: 34215128 DOI: 10.1016/j.talanta.2021.122513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022]
Abstract
In this work, 1-vinyl-3-octadecylimidazolium bromide ionic liquids ([C18VIm]Br) and their derived carbon dots (ImC18CDs) were prepared, [C18VIm]Br and ImC18CDs were grafted on the silica to obtain Sil-ImC18 and Sil-ImC18CDs, respectively, and they were also co-grafted on silica which named Sil-ImC18/CDs. Compared with Sil-ImC18 and Sil-ImC18CDs columns, Sil-ImC18/CDs column exhibited enhanced selectivity for separation of tetracyclic/tricyclic polycyclic aromatic hydrocarbon (PAH) isomers, and butylbenzene isomers in reversed-phase liquid chromatography, which may be due to the synergistic effect between ImC18CDs and [C18VIm]Br, the π-π interaction between imidazolium and analytes, etc. Meanwhile, the retention behavior of Sil-ImC18/CDs was further evaluated and compared with the commercial C18 column using different classes of analytes, including standard test mixtures of Tanaka, Engelhardt, SRM869b, SRM870. The results demonstrated that co-grafted column exhibited superior separation performance. And this column was applied to determine the contents of calycosin-7-glucoside, ononin, calycosin and formononetin in the extract of Radix Astragali, which were found that the concentration was 0.25 mg mL-1, 0.15 mg mL-1, 0.13 mg mL-1 and 0.30 mg mL-1, respectively.
Collapse
Affiliation(s)
- Danni Jiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Ming Guan
- Laboratory on Pollution Monitoring and Control, College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
18
|
Chen M, Lu X, Ma X, Xiao Y, Wang Y. Click preparation of multiple-thioether bridged cyclodextrin chiral materials for efficient enantioseparation in high-performance liquid chromatography. Analyst 2021; 146:3025-3033. [PMID: 33949420 DOI: 10.1039/d1an00145k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient covalent immobilization procedure is considered as an essential tool for obtaining stable and reliable cyclodextrin (CD) chiral stationary phases (CSPs). This work reports the "thiolene" click immobilization of heptakis(6-mercapto-6-deoxy)-β-CD-CSP onto alkene functional silica to afford novel multiple-thioether bridged CD CSPs by controlling the surface CD concentration. Solid-state NMR, FTIR, TGA and X-ray photoelectron diffraction spectroscopy (XPS) results proved the successful preparation of the desired CSPs with different surface CD loadings. The surface CD concentrations were calculated to be 0.49 and 0.68 μmol m-2 according to the elemental analysis results. More than 60 chiral enantiomers including isoxazolines, chiral lactides, chiral ketones, dansyl amino acids, small molecule acids and alkalis as well as some flavonoids were resolved or partially separated in the reversed-phase HPLC mode. Compared with the previously prepared single thiolene bridged CD-CSP, the current multiple-thioether CD-CSP afforded much better enantioseparation ability due to the existence of the thiol moiety and a confined structure.
Collapse
Affiliation(s)
- Ming Chen
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinling Lu
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xiaofei Ma
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300072, P. R. China
| | - Yong Wang
- School of Science, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
19
|
Amphipathic carbon quantum dots-functionalized silica stationary phase for reversed phase/hydrophilic interaction chromatography. Talanta 2021; 226:122148. [PMID: 33676698 DOI: 10.1016/j.talanta.2021.122148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/24/2022]
Abstract
Carbon quantum dots (CQDs) are considered as good chromatographic separation materials. However, due to the hydrophily of the synthesized CQDs, their applications in HPLC are limited to HILIC for separating strong polar compounds only. In this work, a novel amphipathic CQDs with both hydrophobicity and hydrophily is developed as mixed-mode stationary phase for RPLC/HILIC. To give CQDs certain hydrophobicity, 1,8-diaminooctane is chosen as one of the carbon sources for introducing alkyl chain into CQDs. The amphipathic CQDs modified silica (CQDs/SiO2) stationary phase has typical characteristic of RPLC/HILIC. Both hydrophobic and hydrophilic compounds including alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides and bases, amino acids, β-adrenoceptor blockers and agonists, sulfonamides, antibiotics and alkaloids obtain satisfactory separation on this CQDs/SiO2 column. 14 nucleosides and bases commonly existing in living organisms achieve good separation on this amphipathic CQDs/SiO2 column within 25 min and the resolutions reach 1.33-13.83 with an average column efficiency of 18,800. The retention mechanism of this novel CQDs/SiO2 column is investigated by linear solvation energy relationship model. It is found that hydrophobic interaction, π-π stacking, hydrogen-bonding and electrostatic interactions are main retention interactions under RPLC mode. This work provides a new approach for synthesis of amphipathic CQDs. Also, it indicates that amphipathic CQDs with versatile functional properties have great prospect in separation science.
Collapse
|
20
|
Guo T, Wang X, Zhao C, Shu Y, Wang J. Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomater Sci 2021; 9:3127-3135. [PMID: 33710222 DOI: 10.1039/d1bm00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To prepare carbon dots (CDs), there are numerous protocols that use a wide variety of carbon sources, which results in properties of CDs that are unpredictable and highly variable. Therefore, the development of reliable approaches for precisely regulating the nature of CDs is urgently required. Herein, a series of organophilic/hydrophobic CDs (OCDs) were prepared under microwave agitation with ionic liquid 1-alkyl-3-methylimidazolium dicyanamide as the precursor, by varying the alkyl chain linked in the cationic imidazolium moiety. The physicochemical, optical and biological properties, and imaging performance of OCDs were exploited to elucidate the structure-activity relationship, and it was discovered that the alkyl chain plays key roles in governing the properties of OCDs. The increase in the alkyl chain length, from ethyl, butyl, hexyl, and octyl to decyl, led to a remarkable variation in the properties of the OCDs, i.e., a reduction in nitrogen doping from 40.71 to 20.75%, a decrease in binding affinity with bovine serum albumin (BSA), and an increase in cytotoxicity. The interaction of OCDs with BSA and the formation of a 'protein corona' substantially increased the biocompatibility of the OCDs. The OCDs penetrated into MCF-7 human breast cancer cells in 10 min and demonstrated bright fluorescence imaging.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Chenxi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
21
|
Carbon dots – Separative techniques: Tools-objective towards green analytical nanometrology focused on bioanalysis. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Tang T, Guo D, Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:419-425. [PMID: 33427266 DOI: 10.1039/d0ay02016h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, a series of novel hydrophilic interaction chromatography (HILIC) stationary phases were prepared by grafting nucleosides or nucleotides on the surface of silica gel. Firstly, the silica was modified with 3-glycidoxypropyltrimethoxysilane (GPTMS). And then nucleosides or nucleotides were bonded on the surface of GPTMS-modified silica through the epoxy-amine ring-opening reaction to provide four HILIC materials. These obtained stationary phases were successfully characterized by Fourier transform-infrared spectroscopy (FT-IR) and elemental analysis (EA), respectively. Effects of column temperature, water content of the mobile phase, pH and buffer concentration on the retention behavior of these HILIC materials and the corresponding separation mechanism were evaluated using various nucleosides and nucleobases, respectively. In addition, polar and hydrophilic compounds such as amino acids and water-soluble vitamins were successfully separated using the corresponding columns, showing application potential for the separation of bioactive substances.
Collapse
Affiliation(s)
- Tingfeng Tang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China.
| | | | | |
Collapse
|
23
|
Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Li H, Li T, Shi X, Xu G. Recent development of nanoparticle-assisted metabolites analysis with mass spectrometry. J Chromatogr A 2020; 1636:461785. [PMID: 33340742 DOI: 10.1016/j.chroma.2020.461785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Metabolomics systematically studies the changes of metabolites in biological systems in the temporal or spatial dimensions. It is a challenging task for comprehensive analysis of metabolomics because of diverse physicochemical properties and wide concentration distribution of metabolites. Used as enrichment sorbents, chemoselective probes, chromatographic stationary phases, MS ionization matrix, nanomaterials play excellent roles in improving the selectivity, separation performance, detection sensitivity and identification efficiency of metabolites when mass spectrometry is employed as the detection technique. This review summarized the recent development of nanoparticle-assisted metabolites analysis in terms of assisting the pretreatment of biological samples, improving the separation performance and enhancing the MALDI-MS detection.
Collapse
Affiliation(s)
- Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Ting Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Nitrogen-doping to enhance the separation selectivity of glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta 2020; 218:121140. [DOI: 10.1016/j.talanta.2020.121140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022]
|