1
|
Yang P, Yang W, Zhang H, Zhao R. Metal-Organic Framework for the Immobilization of Oxidoreductase Enzymes: Scopes and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6572. [PMID: 37834709 PMCID: PMC10574266 DOI: 10.3390/ma16196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
Oxidoreductases are a wide class of enzymes that can catalyze biological oxidation and reduction reactions. Nowadays, oxidoreductases play a vital part in most bioenergetic metabolic pathways, which have important applications in biodegradation, bioremediation, environmental applications, as well as biosensors. However, free oxidoreductases are not stable and hard to be recycled. In addition, cofactors are needed in most oxidoreductases catalyze reactions, which are so expensive and unstable that it hinders their industrial applications. Enzyme immobilization is a feasible strategy that can overcome these problems. Recently, metal-organic frameworks (MOFs) have shown great potential as support materials for immobilizing enzymes due to their unique properties, such as high surface-area-to-volume ratio, chemical stability, functional designability, and tunable pore size. This review discussed the application of MOFs and their composites as immobilized carriers of oxidoreductase, as well as the application of MOFs as catalysts and immobilized carriers in redox reactions in the perspective of the function of MOFs materials. The paper also focuses on the potential of MOF carrier-based oxidoreductase immobilization for designing an enzyme cascade reaction system.
Collapse
Affiliation(s)
- Pengyan Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenhui Yang
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Zhao
- School of Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
2
|
Hu X, Wang G, Fang K, Li R, Dong C, Shi S, Li H. The construction of Fe-porphyrin nanozymes with peroxidase-like activity for colorimetric detection of glucose. Anal Biochem 2023:115224. [PMID: 37393976 DOI: 10.1016/j.ab.2023.115224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
As a type of nanomaterials with enzyme-mimetic catalytic properties, nanozymes have attracted wide concern in biological detection. H2O2 was the characteristic product of diverse biological reactions, and the quantitative analysis for H2O2 was an important way to detect disease biomarkers, such as acetylcholine, cholesterol, uric acid and glucose. Therefore, there is of great significance for developing a simple and sensitive nanozyme to detect H2O2 and disease biomarkers by combining with corresponding enzyme. In this work, Fe-TCPP MOFs were successfully prepared by the coordination between iron ions and porphyrin ligands (TCPP). In addition, the peroxidase (POD) activity of Fe-TCPP was proved, in detail, Fe-TCPP could catalyze H2O2 to produce ·OH by Fenton reaction. Herein, glucose oxidase (GOx) was chosen as the model to build cascade reaction by combining Fe-TCPP to detect glucose. The results indicated glucose could be detected by this cascade system selectively and sensitively, and the limit of detection of glucose was achieved to 0.12 μM. Furthermore, a portable hydrogel (Fe-TCPP@GEL) was further established, which encapsulated Fe-TCPP MOFs, GOx and TMB in one system. This functional hydrogel could be applied for colorimetric detection of glucose by coupling with a smartphone easily.
Collapse
Affiliation(s)
- Xiaochun Hu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China; School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guanghua Wang
- Department of Obstetrics and Gynecology, Tongren Hospital, Shanghai Jiaotong University, School of Medicine, China.
| | - Kang Fang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ruihao Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shuo Shi
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Hui Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Zheng L, Wang F, Jiang C, Ye S, Tong J, Dramou P, He H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Yang S, Dai F, Lu L, Yin M, Xue L, Feng W, Li B, Jiao J, Chen Q. All-in-one calcium nanoflowers for dual outputs biosensor: A simultaneous strategy for depression drug evaluation and non-invasive stress assessment. Biosens Bioelectron 2022; 216:114655. [DOI: 10.1016/j.bios.2022.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
|
5
|
Li Y, Wang Q, Ding Z, Wan D, Nie X, Zhong C. A Functionalized Magnetic Graphene-Based MOFs Platform as the Heterogeneous Mimic Enzyme Sensor for Glucose Detection. Catal Letters 2022. [DOI: 10.1007/s10562-021-03815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Copper nanocomposite decorated two-dimensional metal organic frameworks of metalloporphyrin with peroxidase-mimicking activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Jing Y, Li J, Zhang X, Sun M, Lei Q, Li B, Yang J, Li H, Li C, Yang X, Xie L. Catalase-integrated metal-organic framework with synergetic catalytic activity for colorimetric sensing. ENVIRONMENTAL RESEARCH 2022; 207:112147. [PMID: 34606841 DOI: 10.1016/j.envres.2021.112147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
As a platform for enzyme immobilization, metal-organic frameworks (MOFs) can protect enzyme activity from the interference of external adverse environment. Although these strategies have been proven to produce good results, little consideration has been given to the functional similarity of MOFs to the encapsulated enzyme. Here, catalase (CAT) was encapsulated in Fe-BTC with peroxidase-like activity to obtain a stable composite (CAT@Fe-BTC) with synergistic catalytic activity. Depending on the superior selectivity and high catalytic activity of CAT@Fe-BTC, colorimetric sensing for the detection of hydrogen peroxide and phenol was developed. This work demonstrates that the integration of functional MOFs with natural enzyme can be well applied to the construction of efficient catalysts.
Collapse
Affiliation(s)
- Yanqiu Jing
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China.
| | - Jingxin Li
- College of Tobacco Science,Henan Agricultural University, Zhengzhou, Henan province, China
| | - Xuewei Zhang
- China Tobacco Guangdong Industrial Co.Ltd., Guangzhou, Guangdong province, China
| | - Mi Sun
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Qiang Lei
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Bin Li
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Jian Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China
| | - Huaiqi Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China
| | - Chunguang Li
- China Tobacco Henan Industrial Co.Ltd., Zhengzhou, Henan province, China.
| | - Xingyou Yang
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| | - Liangwen Xie
- Sichuan of China National Tobacco Corporation, Chengdu, Sichuan province, China.
| |
Collapse
|
8
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Wang J, Zeng M, Zhao Y, Zuo X, Meng F, Jie H, Lv F, Lu Y, Hou J. Synergetic integration of catalase and Fe 3O 4 magnetic nanoparticles with metal organic framework for colorimetric detection of phenol. ENVIRONMENTAL RESEARCH 2022; 206:112580. [PMID: 34922979 DOI: 10.1016/j.envres.2021.112580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Toxic phenol pollutants pose a great threat to the environment, it is urgent to develop an efficient and recyclable method to monitor phenol. Herein, we reported the synthesis of catalase-Fe3O4@ZIF-8 (CAT-Fe3O4@ZIF-8) through a novel amino-acid-boosted one-pot embedding strategy that synergically integrated catalase and magnetic Fe3O4 nanoparticles with ZIF-8. As expected, CAT-Fe3O4@ZIF-8 exhibited enhanced catalytic activity compared with Fe3O4@ZIF-8, CAT@ZIF-8 and catalase. Depending on the satisfactory performance of CAT-Fe3O4@ZIF-8, a colorimetric detection platform for phenol based on CAT-Fe3O4@ZIF-8 was constructed. The corresponding detection limit was as low as 0.7 μM, and a wide linear range of 5-100 μM was obtained. Besides, CAT-Fe3O4@ZIF-8-based colorimetric detection platform has been verified to possess high stability and recyclability. The proposed method was proven to have potential practical applications in the field of water treatment, which would advance efficient, recyclable monitoring of water quality.
Collapse
Affiliation(s)
- Junning Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Minqian Zeng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fanrong Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hongying Jie
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Fang Lv
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Jibo Hou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| |
Collapse
|
10
|
Zeng X, Liu H, Wu K, Deng A, Li J. Ultra-sensitive detection of florfenicol by flow injection chemiluminescence immunoassay based on Nickel/Cobalt bimetallic metal-organic framework nanozymes. Analyst 2022; 147:1321-1328. [PMID: 35258055 DOI: 10.1039/d2an00126h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The emergence and progress of metal-organic frameworks (MOFs) with high stability, large surface area, and abundant unsaturated active sites, once again promote the development of nanozymes, making nanozymes more advantageous to replace natural enzymes and will increase the applications of chemiluminescence immunoassay. In this study, a flow injection chemiluminescence immunoassay based on Ni/Co metal-organic framework (Ni/Co-MOF) nanozymes was developed, which can quickly and highly sensitively detect florfenicol (FF) in animal-derived food residues. Ni/Co-MOF0.75 nanospheres can not only form stable immune probes with antibodies but also act as nanozymes to efficiently catalyze H2O2 for amplifying the chemiluminescence signal of the luminol-H2O2 system. In addition, due to good biocompatibility and large specific surface area, carboxyl-modified resin beads are used as a suitable material for loading more coating antigens. Based on the principle of competitive immunity, FF standard solution will compete with coating antigen loaded on the carboxyl resin beads for the limited binding sites on the FF antibody. Under the best experimental conditions, the detection range of FF is 0.0001-1000 ng mL-1, and the detection limit (LOD) is 0.033 pg mL-1 (S/N = 3). Furthermore, this method has been successfully applied to the analysis of actual samples with satisfactory results, which will provide a certain reference for the detection of small molecules in food and environmental analysis.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huiling Liu
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
11
|
Falahati M, Sharifi M, Hagen TLMT. Explaining chemical clues of metal organic framework-nanozyme nano-/micro-motors in targeted treatment of cancers: benchmarks and challenges. J Nanobiotechnology 2022; 20:153. [PMID: 35331244 PMCID: PMC8943504 DOI: 10.1186/s12951-022-01375-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/12/2022] [Indexed: 02/07/2023] Open
Abstract
Nowadays, nano-/micro-motors are considered as powerful tools in different areas ranging from cleaning all types of contaminants, to development of Targeted drug delivery systems and diagnostic activities. Therefore, the development and application of nano-/micro-motors based on metal-organic frameworks with nanozyme activity (abbreviated as: MOF-NZs) in biomedical activities have received much interest recently. Therefore, after investigating the catalytic properties and applications of MOF-NZs in the treatment of cancer, this study intends to point out their key role in the production of biocompatible nano-/micro-motors. Since reducing the toxicity of MOF-NZ nano-/micro-motors can pave the way for medical activities, this article examines the methods of making biocompatible nanomotors to address the benefits and drawbacks of the required propellants. In the following, an analysis of the amplified directional motion of MOF-NZ nano-/micro-motors under physiological conditions is presented, which can improve the motor behaviors in the propulsion function, conductivity, targeting, drug release, and possible elimination. Meanwhile, by explaining the use of MOF-NZ nano-/micro-motors in the treatment of cancer through the possible synergy of nanomotors with different therapies, it was revealed that MOF-NZ nano-/micro-motors can be effective in the treatment of cancer. Ultimately, by analyzing the potential challenges of MOF-NZ nano-/micro-motors in the treatment of cancers, we hope to encourage researchers to develop MOF-NZs-based nanomotors, in addition to opening up new ideas to address ongoing problems.
Collapse
Affiliation(s)
- Mojtaba Falahati
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Timo L M Ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
|