1
|
Bressan C, Seró R, Alechaga É, Monfort N, Moyano E, Ventura R. Potential of desorption electrospray ionization and paper spray ionization with high-resolution mass spectrometry for the screening of sports doping agents in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:462-471. [PMID: 36602104 DOI: 10.1039/d2ay01687g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, desorption electrospray ionization and paper spray ionization both with high-resolution mass spectrometry (DESI-HRMS and PSI-HRMS) were explored for the fast and direct analysis of stimulants and diuretics in urine samples. The analysis was performed at a resolution of 70 000 FWHM (m/z 200) using a quadrupole-Orbitrap mass spectrometer in full scan acquisition mode, detecting stimulants and diuretics in positive and negative ion modes, respectively. The most critical parameters affecting the desorption and ionization efficiencies of compounds were optimized, paying particular attention to the optimization of the spray solvent for PSI-HRMS analysis and to the selection of the DESI sample substrate. For stimulants, the PSI-HRMS method performed better than DESI-HRMS, allowing the direct analysis of raw urine samples with better signal-to-noise ratios than DESI. However, results obtained for diuretics were not as satisfactory as we expected. The PSI-HRMS method was applied to the screening of 52 stimulants for doping control purposes, providing satisfactory detectability for most of them at the Minimum Reporting Level (MRL) in less than 2 minutes for each single analysis. Despite the advantages offered by the PSI-HRMS method, in this study is also included a discussion on the limitations observed because of the presence of interference for some compounds.
Collapse
Affiliation(s)
- Claudia Bressan
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Raquel Seró
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
2
|
Wang S, Bai J, Wang K, Guo Y. Carbon fiber paper spray ionization mass spectrometry. Anal Chim Acta 2022; 1232:340477. [DOI: 10.1016/j.aca.2022.340477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
3
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Zhan L, Hou Z, Wang Y, Liu H, Liu Y, Huang G. Rapid Profiling of Metabolic Perturbations to Antibiotics in Living Bacteria by Induced Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1960-1966. [PMID: 36106750 DOI: 10.1021/jasms.2c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid monitoring of real bacterial metabolic perturbations to antibiotics may be helpful to better understand the mechanisms of action and more targeted treatment. In this study, the real metabolic responses to antibiotic treatment in living bacteria were profiled rapidly by induced electrospray ionization mass spectrometry. Significant metabolic perturbations were profiled after antibiotic treatment compared with untreated bacteria. Similar and unique metabolic responses were observed with different antibiotic treatments. Further multivariable analysis was performed to determine significant metabolites as potential biomarkers. Moreover, different metabolic disturbances were detected for serial dilutions of antibiotic treatments. Overall, combined with induced electrospray ionization mass spectrometry, the rapid and real bacterial metabolic status caused by antibiotics was monitored, suggesting the potential application of our method in mechanism exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yu Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Huimin Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, 230001 Hefei, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China
| |
Collapse
|
5
|
Lin Q, Sun J, Wang Y, Ye M, Cheng H. Rapid determination of aldehydes in food by high-throughput reactive paper spray ionization mass spectrometry. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
da Silva TAM, Pereira I, de Aguiar DVA, Dos Santos GF, de Brito TP, de Carvalho RM, Medeiros Junior I, Simas RC, Vaz BG. Direct analysis of naphthenic acids in produced water and crude oil by NH 2-surface-modified wooden-tip electrospray ionization mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5274-5281. [PMID: 34704566 DOI: 10.1039/d1ay01541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work describes the surface coating of wooden toothpicks with amino groups (NH2) for electrospray ionization mass spectrometry (MS) analysis of naphthenic acids (NAs) in produced water samples and crude oil fractions. NH2 was introduced into the cellulosic material through a silanization reaction using aminopropyltriethoxysilane. An NH2-modified toothpick was inserted into the analyte extraction sample and was subsequently used as an electrospray emitter for MS analysis. The extraction conditions were optimized by analyzing NAs (benzoic acid, 1-naphthoic acid, decanoic acid, 3,5-dimethyladamantane-1-carboxylic acid, and 3,5-dimethyladamantane-1-acetic acid) in pure water, and the best condition was using 5 min of extraction time with the samples under agitation. Modified and unmodified wooden toothpicks were compared, and the intensities of all NAs were higher when using the modified substrates than when using the unmodified ones. Limit of detection (LOD), limit of quantification (LOQ), linearity, precision, and recovery were determined by analyzing decanoic acid in seawater samples. The LOD and LOQ were 2 and 5 μg mL-1, respectively, and a linear correlation (R2 = 0.9927) was obtained with concentrations ranging from 5 to 250 μg mL-1. Precision values ranged from 6 to 13% and recoveries from 89 to 106%. The technique was also employed to analyze three produced water samples, in which decanoic acid was semi-quantified, and the concentrations ranged from 10 to 13 μg mL-1. High abundances of acidic compounds of class O2 with DBEs (double bond equivalents) ranging from 1 to 3 and carbon numbers going from 8 to 12 were detected in the produced water samples. The results suggest that the modification of wooden toothpicks with NH2 might offer a significant advancement in the knowledge of cheap substrates that can improve the sensitivity of analysis of NAs in water samples.
Collapse
Affiliation(s)
- Thais A M da Silva
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | - Igor Pereira
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | - Deborah V A de Aguiar
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | - Gabriel F Dos Santos
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | - Talita P de Brito
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | | | | | - Rosineide C Simas
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| | - Boniek G Vaz
- Laboratory of Chromatography and Mass Spectrometry, Institute of Chemistry, Federal University of Goiás, Goiânia, 59078-970, GO, Brazil.
| |
Collapse
|
7
|
Rapid determination and continuous monitoring of propofol in microliter whole blood sample during anesthesia by paper spray ionization-mass spectrometry. Anal Bioanal Chem 2020; 413:279-287. [PMID: 33106945 DOI: 10.1007/s00216-020-02999-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022]
Abstract
Propofol is a widely used intravenous anesthetic agent in sedation and general anesthesia. To improve the safety and maintain the depth of anesthesia, it is important to develop a rapid, sensitive, and reliable method to monitor the concentration of propofol in blood during anesthesia continuously. Here, we present a novel strategy based on paper spray ionization-mass spectrometry (PSI-MS) to detect propofol. Samples (in 10 μL) were mixed with methanol as protein precipitation solvent and 2,6-dimethylphenol as internal standard. Protein micro-precipitation was achieved with methanol by vortexing and centrifuging for 5 s each, and propofol was extracted to the supernatant. PSI-MS was performed in negative ionization mode, and MS signal lasted for 1 min. The analysis of a single sample was completed within 2 min. The area ratios of propofol to internal standard were calculated for quantification. Limit of detection of 5.5 ng mL-1 and limit of quantification of 18.2 ng mL-1 were achieved for propofol in whole blood. Calibration curve was linear in the range of 0.02-10 μg mL-1. The developed method was used successfully in monitoring the propofol concentration in 3 patients' whole blood during anesthesia, showing its further application in controlling and feeding-back target concentration infusion. Graphical abstract.
Collapse
|
8
|
Tan B, Huang L, Wu Y, Liao J. Advances and trends of hydrogel therapy platform in localized tumor treatment: A review. J Biomed Mater Res A 2020; 109:404-425. [PMID: 32681742 DOI: 10.1002/jbm.a.37062] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
Abstract
Due to limitations of treatment and the stubbornness of infiltrative tumor cells, the outcome of conventional antitumor treatment is often compromised by a variety of factors, including severe side effects, unexpected recurrence, and massive tissue loss during the treatment. Hydrogel-based therapy is becoming a promising option of cancer treatment, because of its controllability, biocompatibility, high drug loading, prolonged drug release, and specific stimuli-sensitivity. Hydrogel-based therapy has good malleability and can reach some areas that cannot be easily touched by surgeons. Furthermore, hydrogel can be used not only as a carrier for tumor treatment agents, but also as a scaffold for tissue repair. In this review, we presented the latest researches in hydrogel applications of localized tumor therapy and highlighted the recent progress of hydrogel-based therapy in preventing postoperative tumor recurrence and improving tissue repair, thus proposing a new trend of hydrogel-based technology in localized tumor therapy. And this review aims to provide a novel reference and inspire thoughts for a more accurate and individualized cancer treatment.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxiao Huang
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|