1
|
Chen J, Zhu H, Xia J, Zhu Y, Xia C, Hu Z, Jin Y, Wang J, He Y, Dai J, Hu Z. High-Performance Multi-Dynamic Bond Cross-Linked Hydrogel with Spatiotemporal siRNA Delivery for Gene-Cell Combination Therapy of Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206306. [PMID: 37078785 DOI: 10.1002/advs.202206306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Indexed: 05/03/2023]
Abstract
Chronic inflammatory diseases, such as intervertebral disc degeneration (IVDD), which affect the lives of hundreds of millions of people, still lack effective and precise treatments. In this study, a novel hydrogel system with many extraordinary properties is developed for gene-cell combination therapy of IVDD. Phenylboronic acid-modified G5 PAMAM (G5-PBA) is first synthesized, and therapeutic siRNA silencing the expression of P65 mixed with G5-PBA (siRNA@G5-PBA) is then embedded into the hydrogel (siRNA@G5-PBA@Gel) based on multi-dynamic bonds including acyl hydrazone bonds, imine linkage, π-π stacking, and hydrogen bonding interactions. Local and acidic inflammatory microenvironment-responsive gene-drug release can achieve spatiotemporal regulation of gene expression. In addition, gene-drug release from the hydrogel can be sustained for more than 28 days in vitro and in vivo, greatly inhibiting the secretion of inflammatory factors and the subsequent degeneration of nucleus pulposus (NP) cells induced by lipopolysaccharide (LPS). Through prolonged inhibition of the P65/NLRP3 signaling pathway, the siRNA@G5-PBA@Gel is verified to relieve inflammatory storms, which can significantly enhance the regeneration of IVD when combined with cell therapy. Overall, this study proposes an innovative system for gene-cell combination therapy and a precise and minimally invasive treatment method for IVD regeneration.
Collapse
Affiliation(s)
- Jiaxin Chen
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Haifeng Zhu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jiechao Xia
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yutao Zhu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Zehui Hu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yang Jin
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ji Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiayong Dai
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhijun Hu
- Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| |
Collapse
|
2
|
Han H, Xing J, Chen W, Jia J, Li Q. Fluorinated polyamidoamine dendrimer-mediated miR-23b delivery for the treatment of experimental rheumatoid arthritis in rats. Nat Commun 2023; 14:944. [PMID: 36805456 PMCID: PMC9941585 DOI: 10.1038/s41467-023-36625-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
In rheumatoid arthritis (RA), insufficient apoptosis of macrophages and excessive generation of pro-inflammatory cytokines are intimately connected, accelerating the development of disease. Here, a fluorinated polyamidoamine dendrimer (FP) is used to deliver miR-23b to reduce inflammation by triggering the apoptosis of as well as inhibiting the inflammatory response in macrophages. Following the intravenous injection of FP/miR-23b nanoparticles in experimental RA models, the nanoparticles show therapeutic efficacy with inhibition of inflammatory response, reduced bone and cartilage erosion, suppression of synoviocyte infiltration and the recovery of mobility. Moreover, the nanoparticles accumulate in the inflamed joint and are non-specifically captured by synoviocytes, leading to the restoration of miR-23b expression in the synovium. The miR-23b nanoparticles target Tab2, Tab3 and Ikka to regulate the activation of NF-κB pathway in the hyperplastic synovium, thereby promoting anti-inflammatory and anti-proliferative responses. Additionally, the intravenous administration of FP/miR-23b nanoparticles do not induce obvious systemic toxicity. Overall, our work demonstrates that the combination of apoptosis induction and inflammatory inhibition could be a promising approach in the treatment of RA and possibly other autoimmune diseases.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 130012, Changchun, China.
| |
Collapse
|
3
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
4
|
Li S, Hou X, Ma Y, Wang Z. Phenylboronic-acid-based Functional Chemical Materials for Fluorescence Imaging and Tumor Therapy. ACS OMEGA 2022; 7:2520-2532. [PMID: 35097253 PMCID: PMC8792920 DOI: 10.1021/acsomega.1c06558] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Various functional chemical materials have been widely used in imaging and tumor therapy. Targeted ligands such as antibodies, peptides, and small molecules have been combined with functional materials to enhance cellular uptake and are used for active targeting of cancer cells and tumors. Among them, phenylboronic acid (PBA), as a small molecular ligand, has the characteristics of low cytotoxicity and easy modification. PBA improves the cancer cell imaging and tumor treatment effect by binding to glycans on the surface of cancer cells. In this Mini-Review, we introduced the modification strategy and targeting strategy of PBA. We focused on the applications of PBA-based functional materials in fluorescence imaging and tumor therapy. For fluorescence imaging, the potential of PBA-based functional chemical materials in cancer diagnosis and tumor targeting was proved by cell imaging and in vivo imaging. For tumor therapy, we mainly discussed the applications of PBA-based functional chemical materials in chemotherapy, gene therapy, phototherapy, and immunotherapy. PBA-based functional chemical materials provide a useful method for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource
Engineering, Beijing Advanced Innovation Center for Soft Matter Science
and Engineering, College of Chemistry, Beijing
University of Chemical Technology, Beijing 100029, P. R. China
| | - XinHui Hou
- State Key Laboratory of Chemical Resource
Engineering, Beijing Advanced Innovation Center for Soft Matter Science
and Engineering, College of Chemistry, Beijing
University of Chemical Technology, Beijing 100029, P. R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource
Engineering, Beijing Advanced Innovation Center for Soft Matter Science
and Engineering, College of Chemistry, Beijing
University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource
Engineering, Beijing Advanced Innovation Center for Soft Matter Science
and Engineering, College of Chemistry, Beijing
University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
5
|
Wei S, Shao X, Liu Y, Xiong B, Cui P, Liu Z, Li Q. Genome editing of PD-L1 mediated by nucleobase-modified polyamidoamine for cancer immunotherapy. J Mater Chem B 2022; 10:1291-1300. [DOI: 10.1039/d1tb02688g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immune checkpoint blockade therapy against programmed death protein-1 and its ligand (PD-1/PD-L1) has been accepted as a promising approach to activate the immune system's anti-tumor response. Although small interfering RNA...
Collapse
|
6
|
Gong G, Tang X, Zhang J, Liang X, Yang J, Li Q. Phenylboronic Acid-Modified Polyamidoamine Mediated the Transfection of Polo-Like Kinase-1 siRNA to Achieve an Anti-Tumor Efficacy. Int J Nanomedicine 2021; 16:8037-8048. [PMID: 34934312 PMCID: PMC8680781 DOI: 10.2147/ijn.s329433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background The construction of tumor-targeting carriers with favorable transfection efficiency was of great significance to achieve the tumor gene therapy. The phenylboronic acid-modified polyamidoamine (namely PP) was employed as a carrier for the delivery of Polo-like kinase-1 siRNA (siPlk-1), inducing an obvious anti-tumor response. Materials and Methods The interaction between PP and siPlk-1 was evaluated by gel retardation assay. The transfection efficiency and tumor-targeting ability were analyzed by flow cytometry and confocal laser scanning microscopy, using hepatocarcinoma cell line HepG2 as a model. The anti-proliferation effect of PP/siPlk-1 and related mechanism were studied using the strategies of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell apoptosis and cell cycle arrest. The anti-migration effect induced by PP/siPlk-1 delivery was assayed by wound healing and Transwell migration techniques. Finally, quantitative real-time PCR and Western blotting were performed to measure the expression level of Plk-1 and other key targets. Results The derivative PP could achieve the condensation of siPlk-1 into stable nanoparticles at nitrogen/phosphate groups ratio (N/P ratio) of >3.0, and it could facilitate the transfection of siPk-1 in a phenylboronic acid-dependent manner. The PP/siPlk-1 nanoparticles exhibited obvious anti-proliferation effect owing to the gene silence of Plk-1, which was identified to be associated with the cell apoptosis and cell cycle arrest at G2 phase. Meanwhile, PP/siPlk-1 transfection could efficiently suppress the migration and invasion of tumor cells. Conclusion The derivative PP has been demonstrated to be an ideal tumor-targeting carrier for the delivery of Plk-1 siRNA, exhibiting great potential in the gene therapy of malignant tumors.
Collapse
Affiliation(s)
- Gu Gong
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130031, People's Republic of China
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
7
|
Tang X, Liang X, Wen K, Chen Y, Han H, Li Q. Dual ATP/reduction-responsive polyplex to achieve the co-delivery of doxorubicin and miR-23b for the cancer treatment. Colloids Surf B Biointerfaces 2021; 206:111955. [PMID: 34216852 DOI: 10.1016/j.colsurfb.2021.111955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/13/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022]
Abstract
Combination therapy based on the co-delivery of therapeutic genes and anti-cancer drugs has emerged as a promising approach in the cancer treatment, and stimuli-responsive delivery systems could further improve the therapeutic efficacy. Herein, an ATP aptamer and its complementary DNA were used to form Duplex into which doxorubicin (DOX) was loaded to construct DOX-Duplex, and then the lipoic acid-modified oligoethyleneimine (LA-OEI) was employed as a carrier to realize the co-delivery of DOX-Duplex and miR-23b. The ternary nanocomplex LA-OEI/miR-23b/DOX-Duplex showed excellent anti-proliferative effect by inducing the cell apoptosis via mitochondrial signaling pathway and arresting the cell cycle at S phase. Meanwhile, the co-delivery of DOX-Duplex and miR-23b could efficiently inhibit the metastasis of cancer cells by reducing the expression level of MMP-9. The favorable anti-tumor efficacy of ternary nanocomplex was attributed to the rapid drug release in response to intracellular ATP concentration and reduction conditions and the synergistic effect between DOX-Duplex and miR-23b. Thus, ATP aptamer and reduction-responsive polymer provided a convenient platform to construct dual stimuli-responsive systems for the co-delivery of gene and drug in the cancer treatment.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
8
|
Wang S, Xing J, Xiong B, Han H, Hu M, Li Q. Fluoropolymer-Mediated Intracellular Delivery of miR-23b for the Osteocyte Differentiation in Osteoblasts. Macromol Biosci 2021; 21:e2100024. [PMID: 33713529 DOI: 10.1002/mabi.202100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Indexed: 11/06/2022]
Abstract
Emerging evidence suggests that microRNAs (miRNAs) play key roles in the regulation of multiple biological processes, including the differentiation of osteoblasts. Although miRNA-based gene therapy holds immense potential in the treatment of a variety of diseases, the intracellular delivery of miRNA remains challenging owing to the lack of efficient and safe gene carriers. In this study, a fluoropolymer (FP) is constructed through the modification of polyamidoamine (PAMAM) using heptafluorobutyric anhydride and then is used as a carrier for miR-23b transfection to induce osteocyte differentiation of osteoblasts. The derivative FP is found to facilitate miR-23b transfection due to its favorable endosomal escape from the "proton sponge" effect. Compared to PAMAM/miR-23b, the FP/miR-23b nanocomplex efficiently promotes the differentiation of osteoblasts and formation of calcified nodules, attributable to enhanced expression of various osteogenesis genes (runt-related transfection factor 2 [RUNX2], alkaline phosphatase [ALP], osteopontin [OPN], and osteocalcin [OCN]). Thus, FP-mediated miR-23b transfection may be used as an effective strategy to facilitate osteogenic differentiation.
Collapse
Affiliation(s)
- Sihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Boyu Xiong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Liu H, Liu C, Ye L, Ma D, He X, Tang Q, Zhao X, Zou H, Chen X, Liu P. Nanoassemblies with Effective Serum Tolerance Capability Achieving Robust Gene Silencing Efficacy for Breast Cancer Gene Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003523. [PMID: 33354783 DOI: 10.1002/adma.202003523] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
The transfection efficiency of siRNA mediated by cationic polymers is limited due to the instability of polymers/siRNA complexes in the presence of serum. Poly(ethylene glycol) (PEG) is usually applied to modify cationic polymers, so as to reduce protein and cell adsorption and then to improve siRNA transfection efficiency. However, the polymers' modification with PEG mostly consumes the free amino of the polymers, which can, in turn, reduce the charge density and limit their siRNA transfection efficacy. Here, a new PEG modification strategy that need not consume the surface aminos of polymers is proposed. Catechol-PEG polymers are coated on the surface of phenylboronic acid (PBA)-modified Generation 5 (G5) poly(amidoamine) dendrimers (G5PBA) via reversible boronate esters to establish PEG-modified dendrimer/siRNA nanoassemblies for efficient siRNA delivery. The PEG/G5PBA/siRNA nanoassemblies have positive charge and show excellent gene silencing efficacy in the absence of serum in vitro. More importantly, the PEG/G5PBA/siRNA nanoassemblies also exhibit excellent serum resistance and gene silencing efficacy in serum-containing medium. Furthermore, the effective antiserum and gene silencing efficacy elicited by these nanoassemblies lead to excellent antitumor effects in vivo. This proposed strategy constitutes an important approach to reach an excellent gene silencing efficacy in the presence of serum.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| | - Li Ye
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaozhen He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xue Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Hanbing Zou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 2000127, China
| |
Collapse
|
10
|
Chai H, Wang M, Zhang C, Tang Y, Miao P. Highly Sensitive Genosensing Coupling Rolling Circle Amplification with Multiple DNAzyme Cores for DNA Walking. Bioconjug Chem 2020; 31:764-769. [DOI: 10.1021/acs.bioconjchem.9b00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hua Chai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | | | - Chongyu Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan 250103, P.R. China
| | - Yuguo Tang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P.R. China
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
Gorzkiewicz M, Konopka M, Janaszewska A, Tarasenko II, Sheveleva NN, Gajek A, Neelov IM, Klajnert-Maculewicz B. Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg Chem 2019; 95:103504. [PMID: 31864904 DOI: 10.1016/j.bioorg.2019.103504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
In order to enhance intracellular uptake and accumulation of therapeutic nucleic acids for improved gene therapy methods, numerous delivery vectors have been elaborated. Based on their origin, gene carriers are generally classified as viral or non-viral vectors. Due to their significantly reduced immunogenicity and highly optimized methods of synthesis, nanoparticles (especially those imitating natural biomolecules) constitute a promising alternative for virus-based delivery devices. Thus, we set out to develop innovative peptide dendrimers for clinical application as transfection agents and gene carriers. In the present work we describe the synthesis of two novel lysine-based dendritic macromolecules (D3K2 and D3G2) and their initial characterization for cytotoxicity/genotoxicity and transfection potential in two human cell line models: cervix adenocarcinoma (HeLa) and microvascular endothelial (HMEC-1). This approach allowed us to identify more cationic D3K2 as potent delivery agent, being able to increase intracellular accumulation of large nucleic acid molecules such as plasmids. Moreover, the dendrimers exhibited specific cytotoxicity towards cancer cell line without showing significant toxic effects on normal cells. These observations are promising prognosis for future clinical application of this type of nanoparticles.
Collapse
Affiliation(s)
- Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia; Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851 Lappeenranta, Finland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz-Institut für Polymerforschung Dresden e.V., 6 Hohe St., 01069 Dresden, Germany.
| |
Collapse
|