1
|
Xu Q, Li Q, Ding M, Xiu W, Zhang B, Xue Y, Wang Q, Yang D, Dong H, Teng Z, Mou Y. Flexible nanoplatform facilitates antibacterial phototherapy by simultaneously enhancing photosensitizer permeation and relieving hypoxia in bacterial biofilms. Acta Biomater 2024; 184:313-322. [PMID: 38897337 DOI: 10.1016/j.actbio.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Antimicrobial phototherapy has gained recognition as a promising approach for addressing bacterial biofilms, however, its effectiveness is often impeded by the robust physical and chemical defenses of the biofilms. Traditional antibacterial nanoplatforms face challenges in breaching the extracellular polymeric substances barrier to efficiently deliver photosensitizers deep into biofilms. Moreover, the prevalent hypoxia within biofilms restricts the success of oxygen-reliant phototherapy. In this study, we engineered a soft mesoporous organosilica nanoplatform (SMONs) by incorporating polyethylene glycol (PEG), catalase (CAT), and indocyanine green (ICG), forming SMONs-PEG-CAT-ICG (SPCI). We compared the antimicrobial efficacy of SPCI with more rigid nanoplatforms. Our results demonstrated that unique flexible mechanical properties of SPCI enable it to navigate through biofilm barriers, markedly enhancing ICG penetration in methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Notably, in a murine subcutaneous MRSA biofilm infection model, SPCI showed superior biofilm penetration and pharmacokinetic benefits over its rigid counterparts. The embedded catalase in SPCI effectively converts excess H2O2 present in infected tissues into O2, alleviating hypoxia and significantly boosting the antibacterial performance of phototherapy. Both in vitro and in vivo experiments confirmed that SPCI surpasses traditional rigid nanoplatforms in overcoming biofilm barriers, offering improved treatment outcomes for infections associated with bacterial biofilms. This study presents a viable strategy for managing bacterial biofilm-induced diseases by leveraging the unique attributes of a soft mesoporous organosilica-based nanoplatform. STATEMENT OF SIGNIFICANCE: This research introduces an innovative antimicrobial phototherapy soft nanoplatform that overcomes the inherent limitations posed by the protective barriers of bacterial biofilms. By soft nanoplatform with flexible mechanical properties, we enhance the penetration and delivery of photosensitizers into biofilms. The inclusion of catalase within this soft nanoplatform addresses the hypoxia in biofilms by converting hydrogen peroxide into oxygen in infected tissues, thereby amplifying the antibacterial effectiveness of phototherapy. Compared to traditional rigid nanoplatforms, this flexible nanoplatform not only promotes the delivery of therapeutic agents but also sets a new direction for treating bacterial biofilm infections, offering significant implications for future antimicrobial therapies.
Collapse
Affiliation(s)
- Qinglin Xu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Meng Ding
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weijun Xiu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Bingqing Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yiwen Xue
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Qiyu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wang S, Lv Y. Silica-coated liquid metal nanoparticles with different stiffness for cellular uptake-enhanced tumor photothermal therapy. BIOMATERIALS ADVANCES 2024; 161:213872. [PMID: 38733802 DOI: 10.1016/j.bioadv.2024.213872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Cells can sense the mechanical stimulation of nanoparticles (NPs) and then regulate the cellular uptake process. The enhanced endocytosis efficiency can improve the concentration of NPs in tumor cells significantly, which is the key prerequisite for achieving efficient biological performance. However, the preparation methods of NPs with flexible and tunable stiffness are relatively limited, and the impact of stiffness property on their interaction with tumor cells remains unclear. In this study, soft liquid metal (LM) core was coated with hard silica layer, the obtained core-shell NPs with a wide range of Young's modulus (130.5 ± 25.6 MPa - 1729.2 ± 146.7 MPa) were prepared by adjusting the amount of silica. It was found that the NPs with higher stiffness exhibited superior cellular uptake efficiency and lysosomal escape ability compared to the NPs with lower stiffness. The silica layer not only affected the stiffness, but also improved the photothermal stability of the LM NPs. Both in vitro and in vivo results demonstrated that the NPs with higher stiffness displayed significantly enhanced tumor hyperthermia capability. This work may provide a paradigm for the preparation of NPs with varying stiffness and offer insights into the role of the mechanical property of NPs in their delivery.
Collapse
Affiliation(s)
- Shuai Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, PR China.
| |
Collapse
|
3
|
Ren Y, Guan S, Qu X. Polymer-Protein Assemblies with Tunable Vesicular and Hierarchical Nanostructures. Angew Chem Int Ed Engl 2024; 63:e202317251. [PMID: 38189597 DOI: 10.1002/anie.202317251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
The construction of variable structured multi-protein nano-assemblies is of great interest for the development of protein-based therapeutic systems. This study showcases the synthesis of polymer-protein assemblies with tunable structure like single- and multi-layer polymer-crosslinked protein vesicles, Janus protein vesicles and other hierarchical-structured assemblies by utilizing a dynamic template-assistant intermittent-assembly approach. The generalization of the methodology helps the protein assemblies to gain notable functional complexity. And we demonstrate compelling evidence highlighting the substantial impact of the topological morphology of protein nanoaggregates on their cellular uptake capacity.
Collapse
Affiliation(s)
- Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
4
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
5
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
6
|
Tao J, Tian Y, Chen D, Lu W, Chen K, Xu C, Bao L, Xue B, Wang T, Teng Z, Wang L. Stiffness-Transformable Nanoplatforms Responsive to the Tumor Microenvironment for Enhanced Tumor Therapeutic Efficacy. Angew Chem Int Ed Engl 2023; 62:e202216361. [PMID: 36524465 DOI: 10.1002/anie.202216361] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Herein, we report, for the first time, a unique stiffness-transformable manganese oxide hybridized mesoporous organosilica nanoplatform (MMON) for enhancing tumor therapeutic efficacy. The prepared MMONs had a quasi-spherical morphology and were completely transformed into soft bowl-like nanocapsules in the simulated tumor microenvironment through the breakage of Mn-O bonds, which decreased their Young's modulus from 165.7 to 84.5 MPa. Due to their unique stiffness transformation properties, the MMONs had reduced macrophage internalization, improved tumor cell uptake, and enhanced penetration of multicellular spheroids. In addition, in vivo experiments showed that the MMONs displayed a 3.79- and 2.90-fold decrease in non-specific liver distribution and a 2.87- and 1.83-fold increase in tumor accumulation compared to their soft and stiff counterparts, respectively. Furthermore, chlorin e6 (Ce6) modified MMONs had significantly improved photodynamic therapeutic effect.
Collapse
Affiliation(s)
- Jun Tao
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Ying Tian
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, P. R. China.,Department of Medical Imaging, Jinling Hospital, Nanjing, 210093, P. R. China
| | - Dong Chen
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Kun Chen
- Guangdong Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Chaoli Xu
- Department of Ultrasound Diagnostics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Lei Bao
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Tiankuo Wang
- Shenzhen Institute of Advanced Technology Chinese Academy of Science, Shenzhen, 518020, P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Tao J, Shi W, Chen K, Lu W, Elbourne AJ, Bao L, Weng L, Zheng X, Su X, Teng Z, Wang L. Elasticity of mesoporous nanocapsules regulates cellular uptake, blood circulation, and intratumoral distribution. Biomater Sci 2023; 11:822-827. [PMID: 36625156 DOI: 10.1039/d2bm01701f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The elasticity of nanoparticles plays a critical role in regulating nanoparticle-biosystem interactions. However, the elasticity of traditional organic-based carriers can only be regulated within a narrow range, and the effects of elasticity on in vivo biological processes have not been evaluated until now. Here, we construct hyaluronic acid modified mesoporous organosilica nanoparticles (MONs-HA) with a wide range of elasticity by an interior preferential etching approach and investigate the impact of their elasticity on in vitro cellular uptake, in vivo blood circulation, and tumor accumulation. The Young's moduli of the prepared MONs-HA are 1.64, 0.93, 0.78, 0.4 and 0.29 GPa (denoted as rigid MONs0-HA, semi-elastic MONs20-HA and MONs50-HA, elastic MONs100-HA and MONs200-HA), respectively. They all possess a similar hydrodynamic size (245-257 nm), similar surface electronegativity (-27 to -35 mV), and excellent dispersibility. In vitro experiments demonstrate that the elastic MONs100-HA and MONs200-HA (0.4 and 0.29 GPa) exhibit significantly greater cellular uptake relative to semi-elastic MONs20-HA and MONs50-HA (0.93 and 0.78 GPa) or rigid MONs0-HA (1.64 GPa). Simultaneously, these elastic MONs100-HA and MONs200-HA show an efficiently prolonged circulation time. In vivo results revealed that the elastic MONs100-HA show enhanced tumor accumulation compared to semi-elastic and rigid MONs-HA after intravenous administration. These desirable features of elasticity can direct the design of nanoplatforms, leading to an enhanced tumor delivery efficiency.
Collapse
Affiliation(s)
- Jun Tao
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Wenhui Shi
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Kun Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Wei Lu
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | | | - Lei Bao
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Xudong Zheng
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xiaodan Su
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Zhaogang Teng
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| |
Collapse
|
8
|
Ma E, Fu Z, Sun L, Chen K, Liu Z, Wei Z, Li L, Guo X. Organosilica-based deformable nanopesticides with enhanced insecticidal activity prepared by flash nanoprecipitation. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A flash nanoprecipitation technique was developed for the construction of a novel type of deformable hollow organosilica nanoparticle for pesticide delivery.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|
9
|
Lu D, Fatehi P. Interaction of deformable solid and hollow particles with rough surface morphology in colloidal systems. J Colloid Interface Sci 2023; 630:497-510. [DOI: 10.1016/j.jcis.2022.10.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
10
|
Li W, Gong H, Fu Y, Sun J, Wang Y. Novel pH-sensitive nanoparticles based on prodrug strategy to delivery All-Trans Retinoic Acid for breast cancer. Colloids Surf B Biointerfaces 2022; 219:112838. [PMID: 36148708 DOI: 10.1016/j.colsurfb.2022.112838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Developing chemotherapy with nanoparticle-based prodrugs provides promising strategies for improving the safety and delivery of anti-cancer drugs therapeutics and effective cancer treatment. Herein, we developed a pH-sensitive prodrug delivery system (All-Trans-Retinoic Acid (ATRA) grafted poly (β-amino esters) (PBAE) copolymers, ATRA-g-PBAE) for delivery of ATRA with some physicochemical and biological properties. The in vitro release of ATRA-g-PBAE prodrug nanoparticles (PNPs) was sustained-release and pH-sensitive. The cytotoxicity and uptake of different preparations in vitro were evaluated on MCF-7 cells at pH 7.4 and 5.5. The carrier PBAE had no cytotoxicity, and ATRA-g-PBAE PNPs could significantly inhibit cell growth at pH 5.5. MCF-7 cells treated with Cy5.5 grafted PBAE (Cy5.5-PBAE) showed stronger fluorescence signals at pH 5.5. Meanwhile, ATRA-g-PBAE PNPs entered the cell via a clathrin-mediated endocytic pathway. Subsequently, PBAE protonation facilitated the escape of PNPs from the lysosome and released the drug. ATRA-g-PBAE seems promising as a novel pH-sensitive prodrug to overcome the limitations of ATRA for breast cancer therapy.
Collapse
Affiliation(s)
- Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - HeXin Gong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China
| | - Jialin Sun
- Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin 150066, People's Republic of China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China; Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Lin J, Wang P, Zhu F, Wu M, Luo Q, Zhang Y, Liu X. Tumor Microenvironment-Responsive Yolk-Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy via Osmolarity Surge and Oxidative Stress Amplification. ACS NANO 2022; 16:7380-7397. [PMID: 35435672 DOI: 10.1021/acsnano.1c09496] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-interference therapy, which utilizes ions to disturb intracellular biological processes, provides inspiration for tumor therapy. Artificially reversing osmotic pressure by transporting large amounts of physiological ions to tumor cells is a straightforward yet low-toxic strategy for ion-interference therapy. However, it is hard to achieve due to the serious limitations of single-ion delivery. Herein, we skillfully deliver NaCl nanocrystals to tumor sites and sequentially realize the explosive release of Na+/Cl- inside tumor cells by utilizing a virus-mimicking and glutathione (GSH)-responsive hollow mesoporous tetrasulfide-bridged organosilica (ssss-VHMS). Once the ssss-VHMS-wrapped NaCl nanocrystals (NaCl@ssss-VHMS) accumulate in the tumors, they would rapidly invade tumor cells via spike surface-assisted endocytosis, thus bypassing Na+/K+-ATPase transmembrane ion transporters. Afterward, the intracellular overproduced GSH of tumor cells would trigger the rapid degradation of ssss-VHMS via thiol-tetrasulfide exchange, which could not only remarkably deplete the GSH but also explosively release the Na+/Cl-, leading to the osmolarity surge accompanied by reactive oxygen species (ROS) generation. The cell swelling, ROS storm, and GSH exhaustion of NaCl@ssss-VHMS effectively eradicated tumor cells by caspase-1-dependent pyroptosis, caspase-3-dependent apoptosis, and GPX4-dependent ferroptosis, respectively, thus synergistically inhibiting tumor growth. We believe that NaCl@ssss-VHMS would be a potential cancer therapeutic agent, and this discovery could provide a perspective for exploring synergistic ion-interference therapy.
Collapse
Affiliation(s)
- Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Fukai Zhu
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Qiang Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yun Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| |
Collapse
|
12
|
Liao Z, Tu L, Li X, Liang XJ, Huo S. Virus-inspired nanosystems for drug delivery. NANOSCALE 2021; 13:18912-18924. [PMID: 34757354 DOI: 10.1039/d1nr05872j] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With over millions of years of evolution, viruses can infect cells efficiently by utilizing their unique structures. Similarly, the drug delivery process is designed to imitate the viral infection stages for maximizing the therapeutic effect. From drug administration to therapeutic effect, nanocarriers must evade the host's immune system, break through multiple barriers, enter the cell, and release their payload by endosomal escape or nuclear targeting. Inspired by the virus infection process, a number of virus-like nanosystems have been designed and constructed for drug delivery. This review aims to present a comprehensive summary of the current understanding of the drug delivery process inspired by the viral infection stages. The most recent construction of virus-inspired nanosystems (VINs) for drug delivery is sorted, emphasizing their novelty and design principles, as well as highlighting the mechanism of these nanosystems for overcoming each biological barrier during drug delivery. A perspective on the VINs for therapeutic applications is provided in the end.
Collapse
Affiliation(s)
- Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Li Tu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xing-Jie Liang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Tao J, Feng Z, Zhao J, Rizwan Younis M, Lu W, Chen D, Weng L, Su X, Teng Z, Wang L. Self-transformation synthesis of hierarchically porous benzene-bridged organosilica nanoparticles for efficient drug delivery. J Colloid Interface Sci 2021; 608:1393-1400. [PMID: 34742060 DOI: 10.1016/j.jcis.2021.10.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022]
Abstract
Herein, a feasible outside-in hydrothermal self-transformation strategy is presented to fabricate hierarchically porous benzene-bridged organosilica nanoparticles (HPBONs), and detailed mechanistic investigations were performed to study the formation of hierarchically porous nanostructures. The obtained HPBONs consisted of a mesoporous core (2.3 nm) and a large mesoporous flocculent shell (12.6 nm), which corresponded to an overall diameter of ∼ 200 nm and good water dispersibility, respectively. Owing to the unique hierarchically porous structure and high surface area (877 m2/g), HPBONs showed a high coloading capacity for the hydrophilic drug doxorubicin (DOX) and the hydrophobic photosensitizer chlorin e6 (Ce6) (355 µg/mg, 38 µg/mg, respectively) and acid-responsive DOX drug release (42.62%), leading to precise chemo-photodynamic therapy in vitro, as the cytotoxicity assay revealed 70% killing of breast cancer (MCF-7) cells. This research provides a new method to construct hierarchically porous organosilica-based nanodelivery systems.
Collapse
Affiliation(s)
- Jun Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Zhihao Feng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Jiajia Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical Engineering International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| | - Wei Lu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Dong Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Lixing Weng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, PR China.
| |
Collapse
|
14
|
Tao J, Su X, Li J, Shi W, Teng Z, Wang L. Intricately structured mesoporous organosilica nanoparticles: synthesis strategies and biomedical applications. Biomater Sci 2021; 9:1609-1626. [PMID: 33459311 DOI: 10.1039/d0bm02157a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intricately structured mesoporous organosilica nanoparticles (IMONs) are being increasingly studied from their synthesis strategies to their use in biomedical applications, because of their distinctive hierarchical structures, excellent physicochemical features and satisfactory biological properties. This minireview is the first to summarize recently developed IMONs, including yolk-shell-structured nanoparticles, multi-shelled hollow spheres, deformable nanocapsules, Janus nanostructures and virus-like bionic-structured nanocarriers, and describe the corresponding formation mechanisms and recent evolution of the strategies used to synthesize these kinds of IMONs. Structure-dependent biomedical applications, such as multidrug delivery, bioimaging, synergistic therapy and biocatalysis, are also discussed. Finally, we provide an outlook for IMONs ranging from their structural control to synthesis strategies and ending with their use in biomedical applications.
Collapse
Affiliation(s)
- Jun Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Jing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Wenhui Shi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, P.R. China.
| |
Collapse
|
15
|
Gao X, Ding J, Long Q, Zhan C. Virus-mimetic systems for cancer diagnosis and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1692. [PMID: 33354937 DOI: 10.1002/wnan.1692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 01/02/2023]
Abstract
Over past decades, various strategies have been developed to enhance the delivery efficiency of therapeutics and imaging agents to tumor tissues. However, the therapeutic outcome of tumors to date have not been significantly improved, which can be partly attributed to the weak targeting ability, fast elimination, and low stability of conventional delivery systems. Viruses are the most efficient agents for gene transfer, serving as a valuable source of inspiration for designing nanoparticle-based delivery systems. Based on the properties of viruses, including well-defined geometry, precise composition, easy modification, stable construction, and specific infection, researchers attempt to design biocompatible delivery vectors by mimicking virus assembly and using the vector system to selectively concentrate drugs or imaging probes in tumors with mitigated toxicity and improved efficacy. In this review, we introduce common viruses features and provide an overview of various virus-mimetic strategies for cancer therapy and diagnosis. The challenges faced by virus-mimetic systems are also discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Xihui Gao
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Junqiang Ding
- School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education and PLA, Shanghai, China
| | - Qianqian Long
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Changyou Zhan
- School of Basic Medical Sciences & Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, China.,State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Zhang S, Gan Y, Shao L, Liu T, Wei D, Yu Y, Guo H, Zhu H. Virus Mimetic Shell-Sheddable Chitosan Micelles for siVEGF Delivery and FRET-Traceable Acid-Triggered Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53598-53614. [PMID: 33201664 DOI: 10.1021/acsami.0c13023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeting vascular endothelial growth factor (VEGF) using small interfering RNA (siVEGF) has shown great potential in inhibiting the growth, proliferation, and migration of tumors by reducing the proliferation of blood vessels. On the basis of bionic principles, a novel pH-responsive and virus mimetic shell-sheddable chitosan (CS) micelles (CMs) as siRNA delivery system was introduced in this study. The cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) modified poly(enthylene glycol) (PEG) was conjugated to the HA2 modified chitosan via a hydrazone linkage (cRGD-PEG-Hz-CS-HA2). The cRGD-PEG-Hz-CS-HA2 conjugate could form micelles by interacting with the complex of octanal, Boc-l-lysine, and 9-d-arginine (9R) (octyl-Lys-9R) as a hydrophodic core forming agent, termed as cRGD-PEG-Hz-CS-HA2/octyl-Lys-9R (abbreviated as cRGD/HA2/Hz-CMs).The CMs modified with cRGD can accurately target glioma cells (U87MG cells) with high expression of αvβ3. The payloads of siVEGF were packed into the core of cRGD/HA2/Hz-CMs via electrostatic interaction and hydrophobic interaction. The intracellular cargo release was achieved by the pH-responsive lysis of the hydrazone bond in acidic environment of endosome. Moreover, the exposed HA2, as a pH-sensitive membrane-disruptive peptide, assists the escape of the carriers from endosome into cytosol. In addition, cRGD/HA2/Hz-CMs can effectively deliver siVEGF and silence VEGF gene expression in U87MG cells, leading to the significant tumor growth inhibition. This study demonstrates that cRGD/HA2/Hz-CMs can deliver and release siVEGF in a controlled manner, which was traced by the fluorescence resonance energy transfer (FRET) system in order to achieve RNAi-based anti-angiogenic treatment of cancer in vivo.
Collapse
Affiliation(s)
- Shengyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
- Department of Pharmacy, Haimen People's Hospital, Nantong 226100, China
| | - Ye Gan
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Lanlan Shao
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Tianqing Liu
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 1006, Australia
| | - Danyi Wei
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Yanyan Yu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education &Center for Translational Medicine, Guangxi Medical University, Nanning 530021, China
| | - Hongyan Zhu
- Department of Pharmaceutics, School of Pharmacy, Nantong University, Nantong 226001, China
| |
Collapse
|
17
|
Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials 2020; 256:120191. [PMID: 32593907 DOI: 10.1016/j.biomaterials.2020.120191] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Despite the advantages of mesoporous silica nanoparticles (MSNs) in drug delivery, the inherent non-biodegradability seriously impedes the clinical translation of inorganic MSNs, so the current research focus has been turned to mesoporous organosilica nanoparticles (MONs) with higher biocompatibility and easier biodegradability. Recent remarkable advances in silica fabrication chemistry have catalyzed the emergence of a library of MONs with various structures and functions. This review will summarize the latest state-of-the-art studies on the precise control of morphology, structure, framework, particle size and pore size of MONs, which enables the precise synthesis of MONs with suitable engineering for precision stimuli-responsive drug delivery/release, bioimaging and synergistic therapy. Besides, the potential challenges about the future development of MONs are also outlooked with the intention of attracting more researchers to promote the clinical translation of MONs.
Collapse
|