1
|
Fan X, Xing Y, Wu Z, Li B, Huang P, Liu L. Electrochemical-Enhanced Charge State Modulation of Nitrogen-Vacancy Centers for Ultrasensitive Biodetection of MicroRNA-155. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2592-2601. [PMID: 39690105 DOI: 10.1021/acsami.4c17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via T1 relaxation time of nitrogen-vacancy (NV) centers and EC signals. Quantum sensing was enhanced via external voltage during the EC process, which modulated the negatively charged state of the NV centers, thereby improving the sensitivity and accuracy of miRNA-155 detection. EC sensing improved the accuracy and reliability of miRNA-155 detection while enhancing quantum sensing. The limit of detection (LOD) of the EC-enhanced quantum biosensor reached 10.0 aM, nearly 106 and 10 times lower than the reported LODs of a quantum sensor using bulk diamond and fluorescent sensors, respectively. The LOD of EC sensing was 2.6 aM, aligning with previous reports. The findings of the study indicated that quantum sensing combined with EC sensing can achieve ultrasensitive miRNA-155 detection with high accuracy and reliability, providing an advanced approach for early cancer diagnosis.
Collapse
Affiliation(s)
- Xiaojian Fan
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| |
Collapse
|
2
|
Wei J, Wang X, Yu D, Tu Y, Yu Y. MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies. Discov Oncol 2024; 15:662. [PMID: 39549162 PMCID: PMC11569378 DOI: 10.1007/s12672-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
This paper provides an exhaustive overview of the intricate interplay between microRNAs (miRNAs) and autophagy in the context of human cancers, underscoring the pivotal role these non-coding RNAs play in modulating autophagic pathways and their implications for cancer development, progression, and resistance to therapy. MiRNAs, as critical regulators of gene expression post-transcription, influence various biological processes, including autophagy, a catabolic mechanism essential for cellular homeostasis, stress response, and survival. The review meticulously delineates the mechanisms through which miRNAs impact autophagy by targeting specific genes and signaling pathways, thereby affecting cancer cell proliferation, metastasis, and response to chemotherapy. It highlights several miRNAs with dual roles, acting either as oncogenes or tumor suppressors based on the cellular context and the specific autophagic pathways they regulate. The paper further explores the therapeutic potential of targeting miRNA-autophagy axis, offering insights into novel strategies for cancer treatment through modulation of this axis. Emphasizing the complexity of the miRNA-autophagy relationship, the review calls for more in-depth studies to unravel the nuanced regulatory networks between miRNAs and autophagy in cancer, which could pave the way for the development of innovative therapeutic interventions and diagnostic tools.
Collapse
Affiliation(s)
- Jinxing Wei
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Xianghui Wang
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China
| | - Duo Yu
- Department of Biopharmaceutics School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People's Hospital, Guangdong Medical University, No. 41 Eling North Road, Huizhou, Guangdong, China.
| | - Yaoyu Yu
- Department of Neurosurgery, Brain Hospital Affiliated to Tongji University, No.2880, Qixin Road, Shanghai, China.
| |
Collapse
|
3
|
Jiang H, Li Y, Lv X, Deng Y, Li X. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta 2023; 260:124645. [PMID: 37148686 PMCID: PMC10156408 DOI: 10.1016/j.talanta.2023.124645] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid amplification techniques have always been one of the hot spots of research, especially in the outbreak of COVID-19. From the initial polymerase chain reaction (PCR) to the current popular isothermal amplification, each new amplification techniques provides new ideas and methods for nucleic acid detection. However, limited by thermostable DNA polymerase and expensive thermal cycler, PCR is difficult to achieve point of care testing (POCT). Although isothermal amplification techniques overcome the defects of temperature control, single isothermal amplification is also limited by false positives, nucleic acid sequence compatibility, and signal amplification capability to some extent. Fortunately, efforts to integrating different enzymes or amplification techniques that enable to achieve intercatalyst communication and cascaded biotransformations may overcome the corner of single isothermal amplification. In this review, we systematically summarized the design fundamentals, signal generation, evolution, and application of cascade amplification. More importantly, the challenges and trends of cascade amplification were discussed in depth.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Qian Y, Gu Y, Deng J, Cai Z, Wang Y, Zhou R, Zhu D, Lu H, Wang Z. Combined SERS Microfluidic Chip with Gold Nanocone Array for Effective Early Lung Cancer Prognosis in Mice Model. Int J Nanomedicine 2023; 18:3429-3442. [PMID: 37383221 PMCID: PMC10295598 DOI: 10.2147/ijn.s411395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction As the most common malignant tumor in the world, the prognosis of patients with advanced lung cancer remains poor even after treatment. There are many prognostic marker assays available, but there is still more room for the development of high-throughput and sensitive detection of circulating tumor DNA (ctDNA). Surface-enhanced Raman spectroscopy (SERS), a spectroscopic detection method that has received wide attention in recent years, can achieve exponential amplification of Raman signals by using different metallic nanomaterials. Integrating SERS with signal amplification strategy into the microfluidic chip and applying it to ctDNA detection is expected to be an effective tool for the prognosis of lung cancer treatment effect in the future. Methods To construct a high-throughput SERS microfluidic chip integrated with enzyme-assisted signal amplification (EASA) and catalytic hairpin self-assembly (CHA) signal amplification strategies, using hpDNA-functionalized Au nanocone arrays (AuNCAs) as capture substrates and cisplatin-treated lung cancer mice to simulate the detection environment for sensitive detection of ctDNA in serum of lung cancer patients after treatment. Results The SERS microfluidic chip constructed by this scheme, with two reaction zones, can simultaneously and sensitively detect the concentrations of four prognostic ctDNAs in the serum of three lung cancer patients with a limit of detection (LOD) as low as the aM level. The results of the ELISA assay are consistent with this scheme, and its accuracy is guaranteed. Conclusion This high-throughput SERS microfluidic chip has high sensitivity and specificity in the detection of ctDNA. This could be a potential tool for prognostic assessment of lung cancer treatment efficacy in future clinical applications.
Collapse
Affiliation(s)
- Yayun Qian
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jialin Deng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhaoying Cai
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ruoyu Zhou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dongxu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hongmei Lu
- Department of Pathology, Yangzhou Maternal and Child Health Hospital, Yangzhou, People’s Republic of China
| | - Zheng Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
5
|
Jiang H, Lv X, Li A, Peng Z, Deng Y, Li X. A dual-labeled fluorescence quenching lateral flow assay based on one-pot enzyme-free isothermal cascade amplification for the rapid and sensitive detection of pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37203352 DOI: 10.1039/d3ay00526g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid detection of nucleic acids is integral for clinical diagnostics, especially if a major public-health emergency occurs. However, such detection cannot be carried out efficiently in remote areas limited by medical resources. Herein, a dual-labeled fluorescence resonance energy transfer (FRET) lateral flow assay (LFA) based on one-pot enzyme-free cascade amplification was developed for rapid, convenient, and sensitive detection of open reading frame (ORF)1ab of severe acute respiratory syndrome-coronavirus-2. The catalyzed hairpin assembly (CHA) reaction of two well-designed hairpin probes was initiated by a target sequence and generated a hybridization chain reaction (HCR) initiator. Then, HCR probes modified with biotin were initiated to produce long DNA nanowires. After two-level amplification, the cascade-amplified product was detected by dual-labeled lateral flow strips. Gold nanoparticles (AuNPs)-streptavidin combined with the product and then ran along a nitrocellulose membrane under the action of capillary force. After binding with fluorescent microsphere-labeled-specific probes on the T line, a positive signal (red color) could be observed. Meanwhile, AuNPs could quench the fluorescence of the T line, and an inverse relationship between fluorescence intensity and the concentration of the CHA-HCR-amplified product was formed. The proposed strategy achieved a satisfactory limit of detection of 2.46 pM for colorimetric detection and 174 fM for fluorescent detection, respectively. Benefitting from the features of being one-pot, enzyme-free, low background, high sensitivity, and selectivity, this strategy shows great potential in bioanalysis and clinical diagnostics upon further development.
Collapse
Affiliation(s)
- Hao Jiang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Anyi Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhao Peng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
6
|
Mo L, He W, Li Z, Liang D, Qin R, Mo M, Yang C, Lin W. Recent progress in the development of DNA-based biosensors integrated with hybridization chain reaction or catalytic hairpin assembly. Front Chem 2023; 11:1134863. [PMID: 36874074 PMCID: PMC9978474 DOI: 10.3389/fchem.2023.1134863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
As isothermal, enzyme-free signal amplification strategies, hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA) possess the advantages such as high amplification efficiency, excellent biocompatibility, mild reactions, and easy operation. Therefore, they have been widely applied in DNA-based biosensors for detecting small molecules, nucleic acids, and proteins. In this review, we summarize the recent progress of DNA-based sensors employing typical and advanced HCR and CHA strategies, including branched HCR or CHA, localized HCR or CHA, and cascaded reactions. In addition, the bottlenecks of implementing HCR and CHA in biosensing applications are discussed, such as high background signals, lower amplification efficiency than enzyme-assisted techniques, slow kinetics, poor stability, and internalization of DNA probes in cellular applications.
Collapse
Affiliation(s)
- Liuting Mo
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Wanqi He
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Ziyi Li
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Danlian Liang
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Runhong Qin
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Mingxiu Mo
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Chan Yang
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| | - Weiying Lin
- Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Institute of Optical Materials and Chemical Biology, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Abstract
Exosomes are extracellular vesicles, which have the ability to convey various types of cargo between cells. Lately, a great amount of interest has been paid to exosomal microRNAs (miRNAs), since much evidence has suggested that the sorting of miRNAs into exosomes is not an accidental process. It has been shown that exosomal miRNAs (exo-miRNAs) are implicated in a variety of cellular processes including (but not limited to) cell migration, apoptosis, proliferation, and autophagy. Exosomes can play a role in cardiovascular diseases and can be used as diagnostic biomarkers for several diseases, especially cancer. Tremendous advances in technology have led to the development of various platforms for miRNA profiling. Each platform has its own limitations and strengths that need to be understood in order to use them properly. In the current review, we summarize some exo-miRNAs that are relevant to exo-miRNA profiling studies and describe new methods used for the measurement of miRNA profiles in different human bodily fluids.
Collapse
|
8
|
Ge S, Li G, Zhou X, Mao Y, Gu Y, Li Z, Gu Y, Cao X. Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification. Talanta 2022; 245:123478. [DOI: 10.1016/j.talanta.2022.123478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 01/14/2023]
|
9
|
Weng S, Lin D, Lai S, Tao H, Chen T, Peng M, Qiu S, Feng S. Highly sensitive and reliable detection of microRNA for clinically disease surveillance using SERS biosensor integrated with catalytic hairpin assembly amplification technology. Biosens Bioelectron 2022; 208:114236. [DOI: 10.1016/j.bios.2022.114236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
|
10
|
Tian Z, Zhou C, Zhang C, Wu M, Duan Y, Li Y. Recent advances of catalytic hairpin assembly and its application in bioimaging and biomedicine. J Mater Chem B 2022; 10:5303-5322. [PMID: 35766024 DOI: 10.1039/d2tb00815g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hairpin assembly (CHA) appears to be a particularly appealing nucleic acid circuit because of its powerful amplification capability, simple protocols, and enzyme-free and isothermal conditions, and can combine with various signal output modes for the biosensing of various analytes. Especially in the last five years, vast CHA related studies have sprung up. With the deep exploration of the CHA mechanism, some novel and excellent CHA strategies have been proposed; meanwhile the CHA cascade strategies with various amplification techniques further improve the analysis performance. Furthermore, diverse CHA based biosensors have been tactfully engineered and extensively employed in imaging applications in living cells and in vivo ascribed to its gentle reaction, efficient amplification and universality. Hence, we present a comprehensive and systematic summary of the progress in CHA and its application in bioimaging and biomedicine to date. At first, we introduced the mechanism and diversification of CHA in detail, including the newly developed CHA and its ingenious combination with a variety of other technologies. Concurrently, we summarized the latest application progress of different CHA strategies in bioimaging and biomedicine, highlighting the merits and drawbacks of representative approaches. Finally, we put forward some views on the challenges and prospects of CHA in bioimaging and biomedicine in the future.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Lim J, Kim S, Oh SJ, Han SM, Moon SY, Kang B, Seo SB, Jang S, Son SU, Jung J, Kang T, Park SA, Moon M, Lim EK. miRNA sensing hydrogels capable of self-signal amplification for early diagnosis of Alzheimer's disease. Biosens Bioelectron 2022; 209:114279. [PMID: 35447599 DOI: 10.1016/j.bios.2022.114279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD), one of the leading senile disorders in the world, causes severe memory loss and cognitive impairment. To date, there is no clear cure for AD. However, early diagnosis and monitoring can help mitigate the effects of this disease. In this study, we reported a platform for diagnosing early-stage AD using microRNAs (miRNAs) in the blood as biomarkers. First, we selected an appropriate target miRNA (miR-574-5p) using AD model mice (4-month-old 5XFAD mice) and developed a hydrogel-based sensor that enabled high-sensitivity detection of the target miRNA. This hydrogel contained catalytic hairpin assembly (CHA) reaction-based probes, leading to fluorescence signal amplification without enzymes and temperature changes, at room temperature. This sensor exhibited high sensitivity and selectivity, as evidenced by its picomolar-level detection limit (limit of detection: 1.29 pM). Additionally, this sensor was evaluated using the plasma of AD patients and non-AD control to validate its clinical applicability. Finally, to use this sensor as a point-of-care-testing (POCT) diagnostic system, a portable fluorometer was developed and verified for feasibility of application.
Collapse
Affiliation(s)
- Jaewoo Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, South Korea
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Song Mi Han
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea; Department of Neurology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - So Young Moon
- Department of Neurology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Byunghoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Seung Beom Seo
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Soojin Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Seong Uk Son
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sun Ah Park
- Lab for Neurodegenerative Dementia, Department of Anatomy, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea; Department of Neurology, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, South Korea
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, South Korea.
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| |
Collapse
|
12
|
Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
14
|
Zhang X, Xu J, Yan C, Yao L, Shang H, Chen W. A Short- and Long-Range Fluorescence Resonance Energy Transfer-Cofunctionalized Fluorescence Quenching Collapsar Probe Regulates Amplified and Accelerated Detection of Salmonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14294-14301. [PMID: 34797054 DOI: 10.1021/acs.jafc.1c05780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Accurate and rapid quantification of foodborne pathogens is of great significance for food safety and human health. In this work, we have successfully constructed a fluorescence quenching collapsar probe (FQCP) on the basis of a conventional aptamer-encoded molecular beacon (AEMB) and applied it for the detection of Salmonella. In structure, the FQCP is assembled by AEMBs in fours via specific streptavidin and biotin binding. Such a simple format makes the FQCP cofunctionalized with short- and long-range fluorescence resonance energy transfer (FRET) effects, thereby leading to a significantly suppressed inherent background fluorescence that is much lower than that of the conventional AEMB. Moreover, the FQCP exhibits superior biostability because of the blocking of its 3' terminal. The reaction kinetics of the FQCP for Salmonella recognition is obviously improved since the probe designed with four binding sites increases the probability to react with Salmonella. As a result, the FQCP-based sensing platform can rapidly output the target detection signal within 30 min associated with a greatly improved signal-to-noise ratio up to 32.4. The system was also demonstrated with a well antimatrix effect for ultrasensitive detection of Salmonella from tap water, milk, red bull, green tea, orange juice, and Coca-Cola. Our study provides insights into the facile tailoring of functional nucleic acids for amplified and mix-to-answer detection of foodborne pathogens, which could become a powerful analytical tool for straightforward sensing of pathogens in the fields of food safety analysis, clinical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xinlei Zhang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yan
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P.R. China
| | - Li Yao
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Huijie Shang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Orlandella FM, Auletta L, Greco A, Zannetti A, Salvatore G. Preclinical Imaging Evaluation of miRNAs' Delivery and Effects in Breast Cancer Mouse Models: A Systematic Review. Cancers (Basel) 2021; 13:6020. [PMID: 34885130 PMCID: PMC8656589 DOI: 10.3390/cancers13236020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We have conducted a systematic review focusing on the advancements in preclinical molecular imaging to study the delivery and therapeutic efficacy of miRNAs in mouse models of breast cancer. METHODS A systematic review of English articles published in peer-reviewed journals using PubMed, EMBASE, BIOSIS™ and Scopus was performed. Search terms included breast cancer, mouse, mice, microRNA(s) and miRNA(s). RESULTS From a total of 2073 records, our final data extraction was from 114 manuscripts. The most frequently used murine genetic background was Balb/C (46.7%). The most frequently used model was the IV metastatic model (46.8%), which was obtained via intravenous injection (68.9%) in the tail vein. Bioluminescence was the most used frequently used tool (64%), and was used as a surrogate for tumor growth for efficacy treatment or for the evaluation of tumorigenicity in miRNA-transfected cells (29.9%); for tracking, evaluation of engraftment and for response to therapy in metastatic models (50.6%). CONCLUSIONS This review provides a systematic and focused analysis of all the information available and related to the imaging protocols with which to test miRNA therapy in an in vivo mice model of breast cancer, and has the purpose of providing an important tool to suggest the best preclinical imaging protocol based on available evidence.
Collapse
Affiliation(s)
| | - Luigi Auletta
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Adelaide Greco
- InterDepartmental Center of Veterinary Radiology, University of Naples Federico II, 80131 Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, 80145 Naples, Italy; (L.A.); (A.Z.)
| | - Giuliana Salvatore
- IRCCS SDN, 80143 Naples, Italy;
- Department of Motor Sciences and Wellness, University of Naples Parthenope, 80133 Naples, Italy
- CEINGE-Biotecnologie Avanzate S.C.A.R.L., 80145 Naples, Italy
| |
Collapse
|
16
|
Rombouts S, Nollmann M. RNA imaging in bacteria. FEMS Microbiol Rev 2021; 45:5917984. [PMID: 33016325 DOI: 10.1093/femsre/fuaa051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/01/2020] [Indexed: 12/25/2022] Open
Abstract
The spatiotemporal regulation of gene expression plays an essential role in many biological processes. Recently, several imaging-based RNA labeling and detection methods, both in fixed and live cells, were developed and now enable the study of transcript abundance, localization and dynamics. Here, we review the main single-cell techniques for RNA visualization with fluorescence microscopy and describe their applications in bacteria.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 Rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
17
|
Xu J, Li Z, Li Y, Lu Y, Wang J. Activation of palindromes on a degradable modular grafting probe enables ultrasensitive detection of microRNAs. Chem Commun (Camb) 2021; 57:5941-5944. [PMID: 34018521 DOI: 10.1039/d1cc01150b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes a single-stranded degradable modular grafting probe for analyzing microRNA-21. In the system, the exonuclease activity of phi29 polymerase restrains the SYBR Green I/ssDNA induced background. The palindrome activation caused remarkable target fluorescence. The detection limit was achieved as 0.26 fM, showing potential in biochemical analysis.
Collapse
Affiliation(s)
- Jianguo Xu
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhi Li
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Yumei Li
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Yusheng Lu
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Jie Wang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China. and School of Pharmacy, Anhui Medical University, Hefei 230031, China
| |
Collapse
|
18
|
Xie KX, Liu Q, Song XL, Huo RP, Shi XH, Liu QL. Amplified Fluorescence by Hollow-Porous Plasmonic Assembly: A New Observation and Its Application in Multiwavelength Simultaneous Detection. Anal Chem 2021; 93:3671-3676. [PMID: 33599476 DOI: 10.1021/acs.analchem.0c05219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Surface plasmon coupled emission (SPCE) is a new analytical technique that provides increased and directional radiation based on the near-field interaction between fluorophores and surface plasmons but suffers from the limitation of insufficient sensitivity. The assembly of hollow-porous plasmonic nanoparticles could be the qualified candidate. After the introduction of gold nanocages (AuNCs), fluorescence signal enhancement was realized by factors over 150 and 600 compared with the normal SPCE and free space emission, respectively, with a fluorophore layer thickness of approximately 10 nm; hence, the unique enhancement of SPCE by the AuNCs effectively overcomes the signal quenching induced by resonance energy transfer (in normal SPCE). This enhancement was proven to be triggered by the superior wavelength match, the enhanced electromagnetic field, and new radiation channel and process induced by the AuNC assembly, which provides an opportunity to increase the detection sensitivity and establish an optimal plasmonic enhancement system. The amplified SPCE system was employed for multiwavelength simultaneous enhancement detection through the assembly of mixed hollow nanoparticles (AuNCs and gold nanoshells), which could broaden the application of SPCE in simultaneous sensing and imaging for multianalytes.
Collapse
Affiliation(s)
- Kai-Xin Xie
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiu-Li Song
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Rui-Ping Huo
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Xiao-Hong Shi
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| | - Qiao-Ling Liu
- Department of Chemistry, Taiyuan Normal University, Jinzhong, Shanxi 030619, PR China
| |
Collapse
|
19
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
20
|
Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102339. [PMID: 33227538 DOI: 10.1016/j.nano.2020.102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA (miRNA) has emerged as a promising genetic marker for cancer diagnosis and therapy because its expression level is closely related to the progression of malignant diseases. Herein, a label-free and selective fluorescence platform was proposed for miRNA based on light-up "G-quadruplex nanostring" via duplex-specific nuclease (DSN) mediated tandem rolling circle amplification (RCA). First, a long DNA generated from upstream RCA was designed with the antisense sequences for miR-21 and downstream RCA primer. Upon recognizing miR-21, the resulting DNA-RNA permitted DSN digestion and triggered downstream two-way RCA, and generation of abundant "G-quadruplex nanostring" binding with ZnPPIX for label-free fluorescent responses. In our strategy, the strong preference of DSN for perfectly matched DNA/RNA ensures its excellent selectivity. The developed method generated wide linear response with LOD of 1.019 fM. Additionally, the miR-21 levels in cell extracts have been evaluated, revealing the utility of this tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Qi Liu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Xi-Luan Yan
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, China.
| | - Chenzhong Li
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| |
Collapse
|
21
|
Bidar N, Oroojalian F, Baradaran B, Eyvazi S, Amini M, Jebelli A, Hosseini SS, Pashazadeh-Panahi P, Mokhtarzadeh A, de la Guardia M. Monitoring of microRNA using molecular beacons approaches: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Chen J, Fan T, Chen Y, Ye L, Zhang C, Liu F, Qin Y, Tan Y, Jiang Y. Zeptomolar-level one-pot simultaneous detection of multiple colorectal cancer microRNAs by cascade isothermal amplification. Biosens Bioelectron 2020; 169:112631. [PMID: 32980803 DOI: 10.1016/j.bios.2020.112631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
Multi-microRNA (miRNA) detection would greatly facilitate early diagnosis of colorectal cancer (CRC). Here a convenient cascade isothermal amplification approach incorporating a G-quadruplex molecular beacon (G4MB) was established for achieving one-pot detection of multiple CRC miRNAs (miRNA-21, miRNA-92a, miRNA-31); this strategy incorporated a Bsu DNA polymerase (Bsu pol)-induced strand-displacement reaction and a Lambda exonuclease (λexo)-aided recycling reaction. In the presence of target miRNA, the G-rich stem structure was opened and became available for hybridization with the primer to initiate synthesis of Bsu pol-catalyzed double-stranded DNA (dsDNA) that displaced the miRNA target and released it, allowing it to participate in subsequent amplification cycles. Meanwhile, the dsDNA was gradually digested into fragments by λexo from the 5' phosphorylated end, releasing the newly synthesized DNA strand for participation in subsequent cycles that led to amplification of the fluorescent signal. This approach provided a low limit of detection (LOD) of zeptomolar-level, 85.8 zM, 77.6 zM, 78.9 zM for miRNA-21, miRNA-92a, miRNA-31, respectively. It could distinguish the mismatched targets and achieved three miRNA targets detection run in parallel in one-pot within 2 h. Thus, this fast, simple, and convenient strategy holds great promise as a clinical application for the detection of multiple miRNAs in clinical CRC samples.
Collapse
Affiliation(s)
- Junyue Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Tingting Fan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yan Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Lizhen Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Chen Zhang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China.
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Kim HO, Na W, Yeom M, Lim JW, Bae EH, Park G, Park C, Lee H, Kim HK, Jeong DG, Lyoo KS, Le VP, Haam S, Song D. Dengue Virus-Polymersome Hybrid Nanovesicles for Advanced Drug Screening Using Real-Time Single Nanoparticle-Virus Tracking. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6876-6884. [PMID: 31950828 DOI: 10.1021/acsami.9b20492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dengue virus (DENV) is a major infectious viral pathogen that affects millions of individuals worldwide every year, causing a potentially fatal syndrome, while no commercial antiviral drugs are yet available. To develop an antiviral against dengue fever, it is necessary to understand the relationship between DENV and host cells, which could provide a basis for viral dynamics and identification of inhibitory drug targets. In this study, we designed DiD-loaded and BODIPY-ceramide-encapsulated DENV-polymersome hybrid nanovesicles (DENVSomes) prepared by an extrusion method, which trigger red fluorescence in the endosome and green in the Golgi. DENVSome monitors the dynamics of host cell-virus interaction and tracking in living cells with novel state-of-the-art imaging technologies that show images at high resolution. Also, DENVSome can be exploited to screen whether candidate antiviral drugs interact with DENVs. Consequently, we successfully demonstrated that DENVSome is an efficient tool for tracking and unraveling the mechanisms of replication and drug screening for antiviral drugs of DENV.
Collapse
Affiliation(s)
- Hyun-Ouk Kim
- Department of Pharmacy, College of Pharmacy , Korea University , Sejong 30019 , Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine , Chonnam National University , Gwangju 61186 , Republic of Korea
| | - Minjoo Yeom
- Department of Pharmacy, College of Pharmacy , Korea University , Sejong 30019 , Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical & Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Eun-Hye Bae
- Department of Pharmacy, College of Pharmacy , Korea University , Sejong 30019 , Republic of Korea
| | - Geunseon Park
- Department of Chemical & Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Chaewon Park
- Department of Chemical & Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Hwunjae Lee
- Department of Radiology, College of Medicine , Yonsei University , Seoul 03722 , Republic of Korea
- YUHS-KRIBB Medical Convergence Research Institute , Seoul 03722 , Republic of Korea
| | - Hye Kwon Kim
- Department of Microbiology, College of Natural Sciences , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center , Korea Research Institute of Bioscience and Biotechnology , Daejeon 34141 , Republic of Korea
| | - Kwang-Soo Lyoo
- Korea Zoonosis Research Institute , Chonbuk National University , Iksan 54531 , Republic of Korea
| | - Van Phan Le
- Department of Microbiology and Infectious Diseases, College of Veterinary Medicine , Vietnam National University of Agriculture , Hanoi 100000 , Vietnam
| | - Seungjoo Haam
- Department of Chemical & Biomolecular Engineering , Yonsei University , Seoul 03722 , Republic of Korea
| | - Daesub Song
- Department of Pharmacy, College of Pharmacy , Korea University , Sejong 30019 , Republic of Korea
| |
Collapse
|
24
|
|
25
|
Liu Y, Li S, Zhang L, Zhao Q, Li N, Wu Y. A sensitive and specific method for microRNA detection and in situ imaging based on a CRISPR–Cas9 modified catalytic hairpin assembly. RSC Adv 2020; 10:28037-28040. [PMID: 35519131 PMCID: PMC9055656 DOI: 10.1039/d0ra03603j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
We report here a method for the molecular detection of miRNAs in exosomes and imaging in living cells based on CRISPR–Cas9 and catalytic hairpin assembly.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| | - Shihong Li
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| | - Likun Zhang
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| | - Qian Zhao
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| | - Nuo Li
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| | - Yuxin Wu
- Department of Clinical Laboratory
- The Third Affiliated Hospital of Jinzhou Medical University
- Jinzhou
- China
| |
Collapse
|
26
|
Li D, Zhang T, Yang F, Yuan R, Xiang Y. Efficient and Exponential Rolling Circle Amplification Molecular Network Leads to Ultrasensitive and Label-Free Detection of MicroRNA. Anal Chem 2019; 92:2074-2079. [DOI: 10.1021/acs.analchem.9b04585] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Tingting Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
27
|
Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 2019; 143:111619. [DOI: 10.1016/j.bios.2019.111619] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022]
|
28
|
Zhang X, Liu S, Song X, Wang H, Wang J, Wang Y, Huang J, Yu J. DNA three-way junction-actuated strand displacement for miRNA detection using a fluorescence light-up Ag nanocluster probe. Analyst 2019; 144:3836-3842. [PMID: 31095133 DOI: 10.1039/c9an00508k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rapid and label-free fluorescence biosensing strategy for highly sensitive detection of microRNA-122 (miR-122) has been developed by the combination of DNA three-way junction (TWJ)-actuated strand displacement and a fluorescence light-up Ag nanocluster (AgNC) probe. In the presence of target miR-122, the attachment of miR-122 to its complementary DNA results in the unblocking of the toehold and branch migration domains in the TWJ, activating the strand displacement reaction (SDR) accompanied by the proximity between the G-rich DNA probe and DNA-AgNC probe; thus a remarkably enhanced fluorescence signal of AgNCs can be obtained owing to the G-rich fluorescence enhancement mechanism. The results reveal that this biosensor exhibits superb specificity and high sensitivity toward miR-122 with a detection limit of 0.030 nM. In addition, the practicality of the biosensor is demonstrated by analyzing miR-122 in three cell lines with satisfactory results. Furthermore, by the utilization of the toehold-mediated SDR and DNA-AgNC conjugates, this proposed strategy offers the advantages of rapidness, convenience, low cost, and simplified operation without the need for biological labeling and the addition of enzymes. Thus, the constructed biosensor might provide a valuable and practical tool for detecting miRNA and the related clinical diagnosis and fundamental biomedicine research.
Collapse
Affiliation(s)
- Xue Zhang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Xiaolei Song
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, P. R. China
| | - Haiwang Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jingfeng Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Yu Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China.
| | - Jiadong Huang
- College of Biological Sciences and Technology, University of Jinan, Jinan 250022, P. R. China. and Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
29
|
Zhao Y, Wang Y, Liu S, Wang C, Liang J, Li S, Qu X, Zhang R, Yu J, Huang J. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs. Analyst 2019; 144:5245-5253. [DOI: 10.1039/c9an00953a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a rapid and high-efficiency fluorescent biosensing platform based on triple-helix molecular-switch (THMS)-actuated exponential rolling circular amplification (RCA) strategy for the ultrasensitive detection of miR-21.
Collapse
Affiliation(s)
- Yihan Zhao
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Su Liu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Chonglin Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiaxu Liang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Shasha Li
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
| | - Xiaonan Qu
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Rufeng Zhang
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P.R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P.R. China
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
| |
Collapse
|
30
|
Chen A, Zhuo Y, Chai Y, Yuan R. Bipedal DNA walker mediated enzyme-free exponential isothermal signal amplification for rapid detection of microRNA. Chem Commun (Camb) 2019; 55:13932-13935. [DOI: 10.1039/c9cc06214a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work reported an electrochemiluminescence (ECL) biosensor based on a bipedal DNA walker mediated enzyme-free exponential isothermal DNA signal amplification, which achieved sensitive and rapid detection of microRNA (miRNA).
Collapse
Affiliation(s)
- Anyi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|