1
|
Rahimi FA, Singh A, Jena R, Dey A, Maji TK. GFP Chromophore Integrated Conjugated Microporous Polymers toward Bioinspired Photocatalytic CO 2 Reduction to CO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43171-43179. [PMID: 39135392 DOI: 10.1021/acsami.4c09906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The development of highly active, durable, and low-cost metal-free catalysts for the photocatalytic CO2 reduction reaction (CO2RR) is an efficient and environmentally friendly solution to address significant problems like global warming and high energy demand. In the present study, we have demonstrated the design and synthesis of a donor-acceptor based conjugated microporous polymer (CMP), TPA-GFP, by integrating an electron donor, tris(4-ethynylphenyl)amine (TPA), with a green fluorescent protein chromophore analogue (Z)-4-(2-hydroxy-3,5-diiodobenzylidene)-1-(4-iodophenyl)-2-methyl-1H-imidazol-5(4H)-one (o-HBDI-I3) (GFP). In comparison to nondonor 1,3,5-triethynylbenzene (TEB) based TEB-GFP CMP, photocatalytic CO2 reduction using donor-acceptor based TPA-GFP CMP displays a 3-fold increment of CO production yield with a maximum CO yield of 1666 μmol g-1 at 12 h. Further, the CO selectivity increases significantly from a mere 54% in TEB-GFP to an impressive 95% in TPA-GFP. The impressive CO2 reduction efficiency and selectivity for TPA-GFP can be attributed to the efficient light-harvesting capability and facile charge separation and migration through donor-acceptor building units of the CMP. The mechanistic aspect of the photocatalytic CO2 reduction process is explored using in situ DRIFTS and DFT calculation, and a plausible photocatalytic mechanism is proposed.
Collapse
Affiliation(s)
| | | | | | | | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
2
|
Sarkar S, Dutta TK, Mandal BP, Patra A. A porous organic polymer for symmetric sodium dual-ion batteries through an adsorption-intercalation-insertion mechanism. Chem Commun (Camb) 2024; 60:5010-5013. [PMID: 38563975 DOI: 10.1039/d4cc00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A porous organic polymer (POP) has been developed for dual-ion storage in all organic symmetric rechargeable batteries. The triphenylamine-pyrene-based POP could host sodium and hexafluorophosphate ions acting as the anode and the cathode, respectively, through the adsorption-intercalation and insertion mechanism. The current study highlights the concept of widening the potential window of a dual ion battery by judicious selection of the constituent moieties.
Collapse
Affiliation(s)
- Suprabhat Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Tapas Kumar Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | | | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
3
|
Ferreira JRM, Esteves CIC, Marques MMB, Guieu S. Locking the GFP Fluorophore to Enhance Its Emission Intensity. Molecules 2022; 28:molecules28010234. [PMID: 36615428 PMCID: PMC9822164 DOI: 10.3390/molecules28010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
Abstract
The Green Fluorescent Protein (GFP) and its analogues have been widely used as fluorescent biomarkers in cell biology. Yet, the chromophore responsible for the fluorescence of the GFP is not emissive when isolated in solution, outside the protein environment. The most accepted explanation is that the quenching of the fluorescence results from the rotation of the aryl-alkene bond and from the Z/E isomerization. Over the years, many efforts have been performed to block these torsional rotations, mimicking the environment inside the protein β-barrel, to restore the emission intensity. Molecule rigidification through chemical modifications or complexation, or through crystallization, is one of the strategies used. This review presents an overview of the strategies developed to achieve highly emissive GFP chromophore by hindering the torsional rotations.
Collapse
Affiliation(s)
- Joana R. M. Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Cátia I. C. Esteves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
| | - Maria Manuel B. Marques
- LAQV-REQUIMTE, Department of Chemistry, School of Science and Technology, New University of Lisbon, 2829-516 Caparica, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3010-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
4
|
Chen W, Wu Z, Wang Z, Chen C, Zhang Z. Preparation of a reusable and pore size controllable porous polymer monolith and its catalysis of biodiesel synthesis. RSC Adv 2022; 12:12363-12370. [PMID: 35480381 PMCID: PMC9036607 DOI: 10.1039/d2ra01610a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
A sulfonated porous polymer monolith (PPM-SO3H) has been prepared via the polymerisation of styrene (St) and divinyl benzene (DVB) with organic microspheres as pore-forming agents, followed by sulfonation with concentrated sulfuric acid. It was characterized by acid-base titration in order to determine its acid density, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG). The PPM-SO3H showed an acid density of 1.89 mmol g-1 and pore cavities with an average diameter of 870 nm. The catalytic activity of PPM-SO3H in practical biodiesel synthesis from waste fatty acids was investigated and the main reaction parameters were optimized through orthogonal experiment. The best reaction conditions obtained for the optimization of methanol to oil ratio, catalyst concentration, reaction temperature and reaction time were 1 : 1, 20%, 80 °C and 8 h, respectively. PPM-SO3H showed excellent catalytic activity. In biodiesel synthesis, the esterification rate of PPM-SO3H is 96.9%, which is much higher than that of commercial poly(sodium-p-styrenesulfonate) (esterification rate 29.0%). The PPM-SO3H can be reused several times without significant loss of catalytic activity; the esterification rate was still 90.8% after 6 cycles. The pore size of this porous polymer monolith can be controlled. The dimension and shape of this porous polymer monolith were also adjustable by choosing a suitable polymerisation container.
Collapse
Affiliation(s)
- Weiqing Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhaoji Wu
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhengge Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Changjiu Chen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| | - Zhigang Zhang
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066600 China
| |
Collapse
|
5
|
Wei X, Zhu Y, Yu X, Cai L, Ruan N, Wu L, Jia N, James TD, Huang C. Endoplasmic Reticulum Targeting Green Fluorescent Protein Chromophore-based Probe for the Detection of Viscosity. Chem Commun (Camb) 2022; 58:10727-10730. [DOI: 10.1039/d2cc00118g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of endoplasmic reticulum (ER) stress is the main cause of a variety of biological process that are closely related with numerous diseases. The homeostasis of the ER microenvironment...
Collapse
|
6
|
Barman S, Singh A, Rahimi FA, Maji TK. Metal-Free Catalysis: A Redox-Active Donor-Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO 2 Reduction to CH 4. J Am Chem Soc 2021; 143:16284-16292. [PMID: 34547209 DOI: 10.1021/jacs.1c07916] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Achieving more than a two-electron photochemical CO2 reduction process using a metal-free system is quite exciting and challenging, as it needs proper channeling of electrons. In the present study, we report the rational design and synthesis of a redox-active conjugated microporous polymer (CMP), TPA-PQ, by assimilating an electron donor, tris(4-ethynylphenyl)amine (TPA), with an acceptor, phenanthraquinone (PQ). The TPA-PQ shows intramolecular charge-transfer (ICT)-assisted catalytic activity for visible-light-driven photoreduction of CO2 to CH4 (yield = 32.2 mmol g-1) with an impressive rate (2.15 mmol h-1 g-1) and high selectivity (>97%). Mechanistic analysis based on experimental results, in situ DRIFTS, and computational studies reveals that the potential of TPA-PQ for catalyzing photoreduction of CO2 to CH4 was energetically driven by photoactivated ICT upon surface adsorption of CO2, wherein adjacent keto groups of PQ unit play a pivotal role. The critical role of ICT for stimulating photocatalysis is further illustrated by synthesizing another redox-active CMP (TEB-PQ), bearing triethynylbenzene (TEB) and PQ, that shows 8-fold lesser activity for photoreduction toward CO2 to CH4 (yield = 4.4 mmol g-1) as compared to TPA-PQ. The results demonstrate a novel concept for CO2 photoreduction to CH4 using an efficient, sustainable, and recyclable metal-free robust organic photocatalyst.
Collapse
Affiliation(s)
- Soumitra Barman
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ashish Singh
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Faruk Ahamed Rahimi
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, School of Advanced Materials (SAMat), Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
7
|
Kong J, Wang Y, Qi W, Huang M, Su R, He Z. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci 2020; 285:102286. [PMID: 33164780 DOI: 10.1016/j.cis.2020.102286] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
Green fluorescence proteins (GFP) are appealing to a variety of biomedical and biotechnology applications, such as protein fusion, subcellular localizations, cell visualization, protein-protein interaction, and genetically encoded sensors. To mimic the fluorescence of GFP, various compounds, such as GFP chromophores analogs, hydrogen bond-rich proteins, and aromatic peptidyl nanostructures that preclude free rotation of the aryl-alkene bond, have been developed to adapt them for a fantastic range of applications. Herein, we firstly summarize the structure and luminescent mechanism of GFP. Based on this, the design strategy, fluorescent properties, and the advanced applications of GFP-inspired fluorophores are then carefully discussed. The diverse advantages of bioinspired fluorophores, such as biocompatibility, structural simplicity, and capacity to form a variety of functional nanostructures, endow them potential candidates as the next-generation bio-organic optical materials.
Collapse
|
8
|
Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the Effect on Luminescent Properties by Postsynthetic Covalent and Noncovalent Grafting of gfp Chromophore Analogues in Nanoscale MOF-808. Inorg Chem 2020; 59:8251-8258. [PMID: 32490672 DOI: 10.1021/acs.inorgchem.0c00625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we demonstrate mimicking of photophysical properties of native green fluorescent protein (gfp) by immobilizing the gfp chromophore analogues in nanoscale MOF-808 and further exploring the bioimaging applications. The two virtually nonfluorescent gfp chromophore analogues carrying different functionalities, BDI-AE (COOH/COOMe) and BDI-EE (COOMe/COOMe) were immobilized in nanosized MOF-808 via postsynthetic modification. An 1H NMR and IR study confirms that BDI-AE was coordinated in NMOF-808, whereas BDI-EE was just noncovalently encapsulated. Interestingly, the extremely weakly fluorescent monomers BDI-AE and BDI-EE (QY = 0.01-0.03%, lifetime = 0.01-0.03 ns) showed a 102-fold increase in quantum efficiency with a significantly longer excited-state lifetime (QY = 1.8-5.6%, lifetime 0.89-1.49 ns) after immobilization in the NMOF-808 scaffold. Moreover, BDI-AE@MOF-808 has 4 times higher quantum efficiency as well as longer excited-state lifetime in comparison to BDI-EE@NMOF-808 due to the rigidity imposed in the chromophore upon coordination with Zr4+ in the former case. Further, a cell viability test performed for BDI-AE@NMOF-808 in HeLa cells confirmed the nontoxic nature of the material and, more importantly, bioimaging applications have also been explored successfully.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sanchita Karmakar
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Irine Maria Abraham
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Darsi Rambabu
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Dhwanit Dave
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ravi Manjithaya
- Molecular Biology & Genetics Unit (MBGU), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Material Unit (CPMU), School of Advance Material (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
9
|
Singh A, Verma P, Laha S, Samanta D, Roy S, Maji TK. Photochromic Conjugated Microporous Polymer Manifesting Bio-Inspired pcFRET and Logic Gate Functioning. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20991-20997. [PMID: 32283917 DOI: 10.1021/acsami.0c05182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Design and synthesis of solid-state photochromic materials remain a challenge because of high structural constrain. However, this can be mitigated in attaining structural flexibility by introducing permanent porosity into the system. Here, we report for the first time the design and synthesis of a photochromic conjugated microporous polymer (pcCMP) by assembling photochromic dithienylethene aldehyde and benzene-1,3,5-tricarbohydrazide. The yellow photo-isomer pcCMP-O gets converted to a deep-green photo-isomer pcCMP-C by UV-light irradiation, which can be reverted to pcCMP-O by visible light or thermal treatment. Owing to the thermo-irreversible nature, the pcCMP is found to be suitable for designing an INH functioning logic gate. pcCMP-C shows highly enhanced conductivity (92 times) because of enhanced conjugation compared to pcCMP-O. Furthermore, we demonstrate the bio-inspired photo-switchable pcFRET process by encapsulation of a red-emissive green fluorescent protein (gfp) chromophore analogue into the pcCMP. This material shows high processibility and has been exploited further for secret writing.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Parul Verma
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Subhajit Laha
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Syamantak Roy
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
10
|
Kim JM, Seong BL, Lim DK. Bead based facile assay for sensitive quantification of native state green fluorescent protein. RSC Adv 2020; 10:13095-13099. [PMID: 35492102 PMCID: PMC9051470 DOI: 10.1039/c9ra09599c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
A facile method for the quantification of native state protein is strongly required to accurately determine the amount of expressed protein of interest. Here we report a simple bead-based assay, which can sensitively quantify the amount of native state green fluorescent protein using Ni-NTA (nickel-nitrilotriacetic acid)-modified microbead particles. The bead-based method is simple and straightforward to perform and it showed a highly sensitive capability to detect the expressed fluorescent protein because of the enriched fluorescent protein on the beads.
Collapse
Affiliation(s)
- Jung Min Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Korea-ro Seongbuk-gu Seoul Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University 50, Yonsei-ro, Seodaemun-gu Seoul 120-749 Republic of Korea
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University 145 Korea-ro Seongbuk-gu Seoul Republic of Korea
| |
Collapse
|
11
|
Singh A, Verma P, Samanta D, Singh T, Maji TK. Bimodal Heterogeneous Functionality in Redox-Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry 2020; 26:3810-3817. [PMID: 31868270 DOI: 10.1002/chem.201904938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/07/2022]
Abstract
The designing and development of heterogeneous catalysts for conversion of renewable energy to chemical energies by electrochemical as well as photochemical processes is at the forefront of energy research. In this work, two new donor-acceptor-based redox-active conjugated microporous polymers (CMPs) (TAPA-OPE-mix and TAPA-OPE-gly) are synthesized through Schiff base condensation reaction using a microwave synthesizer. Notably, the asymmetric and symmetric bola-amphiphilic nature of the OPE struts results in distinct nanostructuring and morphologies in the CMPs. Interestingly, both CMPs show impressive heterogeneous catalytic activity toward electrochemical O2 reduction and photocatalytic H2 evolution reactions, and therefore, act as bimodal electro- and photocatalytic porous organic materials. Furthermore, the redox-active property of the CMPs is exploited for in situ generation and stabilization of platinum nanoparticles (Pt), and these Pt@CMPs exhibit significantly enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Parul Verma
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Tarandeep Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
12
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
13
|
Singh A, Gupta R, Siddiqui N, Kumar Iyer SS, Ramanathan G. Tuning Thin Film Properties by Structural Modulations in Red Fluorescent Protein Chromophore Analogues. ChemistrySelect 2019. [DOI: 10.1002/slct.201903024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ashish Singh
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Raghav Gupta
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Nazia Siddiqui
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| | - S. Sundar Kumar Iyer
- Department of Electrical EngineeringIndian Institute of Technology Kanpur Kanpur 208016 India
- Samtel Centre for Display TechnologiesIndian Institute of Technology Kanpur Kanpur 208016 India
| | - Gurunath Ramanathan
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|