1
|
Zhang J, Xie B, He H, Gao H, Liao F, Fu H, Liao Y. Target-assisted self-cleavage DNAzyme electrochemical biosensor for MicroRNA detection with signal amplification. Chem Commun (Camb) 2024; 60:12904-12907. [PMID: 39415671 DOI: 10.1039/d4cc04190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, we reported an electrochemical biosensor with target-assisted self-cleavage DNAzyme function for signal amplified detection of miRNA. The target-recycling amplification led to significant signal enhancement and thus offers high detection sensitivity.
Collapse
Affiliation(s)
- Juan Zhang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Benting Xie
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Haonan He
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hejun Gao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Fang Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Hongquan Fu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| | - Yunwen Liao
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Institute of Applied Chemistry, China West Normal University, Nanchong, Sichuan 637000, China.
| |
Collapse
|
2
|
Wang H, Zou H, Wang F. Construction of Multiply Guaranteed DNA Sensors for Biological Sensing and Bioimaging Applications. Chembiochem 2024; 25:e202400266. [PMID: 38801028 DOI: 10.1002/cbic.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Nucleic acids exhibit exceptional functionalities for both molecular recognition and catalysis, along with the capability of predictable assembly through strand displacement reactions. The inherent programmability and addressability of DNA probes enable their precise, on-demand assembly and accurate execution of hybridization, significantly enhancing target detection capabilities. Decades of research in DNA nanotechnology have led to advances in the structural design of functional DNA probes, resulting in increasingly sensitive and robust DNA sensors. Moreover, increasing attention has been devoted to enhancing the accuracy and sensitivity of DNA-based biosensors by integrating multiple sensing procedures. In this review, we summarize various strategies aimed at enhancing the accuracy of DNA sensors. These strategies involve multiple guarantee procedures, utilizing dual signal output mechanisms, and implementing sequential regulation methods. Our goal is to provide new insights into the development of more accurate DNA sensors, ultimately facilitating their widespread application in clinical diagnostics and assessment.
Collapse
Affiliation(s)
- Hong Wang
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Hanyan Zou
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Huang X, Li Z, Shi Y, Zhang Y, Shen T, Chen M, Huang Z, Tong Y, Liu SY, Guo J, Zou X, Dai Z. A DNAzyme dual-feedback autocatalytic exponential amplification biocircuit for microRNA imaging in living cells. Biosens Bioelectron 2023; 241:115669. [PMID: 37688849 DOI: 10.1016/j.bios.2023.115669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Autocatalytic biocircuit are powerful tools for analysing intracellular biomarkers, but these tools are constrained by limitations in amplification capacity and intracellular delivery efficiency. In this work, we developed a DNAzyme-based dual-feedback autocatalytic exponential amplification biocircuit sustained by a honeycomb MnO2 nanosponge (EDA2@hMNS) for live-cell imaging of intracellular low-abundance microRNAs (miRNA). The EDA2 biocircuit comprises a blocked DNAzyme (b-DNAzyme), a Fuel strand and a Substrate strand. In the EDA2 biocircuit, target miRNAs are recycled and feedback for rounds of DNAzymatic amplification, and the DNAzymatic reactions continuously generate target miRNA analogues for dual-feedback to achieve multiple parallel cascade DNAzymatic reactions that improve amplification capacity substantially. In addition, the hMNS ensures high loading and delivery efficiency of biocircuit probes into living cells and also provides sufficient Mn2+ DNAzyme cofactor from in situ decomposition by intracellular glutathione (GSH). The EDA2@hMNS realized a detection limit of 17 pM, which is 288-fold lower than the b-DNAzyme lacking the DNAzymatic amplification. These results demonstrate the great promise for this critical tool in analysing low-abundance biomarkers and cancer diagnostics.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Huang X, Li Z, Tong Y, Zhang Y, Shen T, Chen M, Huang Z, Shi Y, Wen S, Liu SY, Guo J, Zou X, Dai Z. DNAzyme-Amplified Cascade Catalytic Hairpin Assembly Nanosystem for Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2023; 95:11793-11799. [PMID: 37402285 DOI: 10.1021/acs.analchem.3c02071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sensitive imaging of microRNAs (miRNAs) in living cells is significant for accurate cancer clinical diagnosis and prognosis research studies, but it is challenged by inefficient intracellular delivery, instability of nucleic acid probes, and limited amplification efficiency. Herein, we engineered a DNAzyme-amplified cascade catalytic hairpin assembly (CHA)-based nanosystem (DCC) that overcomes these challenges and improves the imaging sensitivity. This enzyme-free amplification nanosystem is based on the sequential activation of DNAzyme amplification and CHA. MnO2 nanosheets were used as nanocarriers for the delivery of nucleic acid probes, which can resist the degradation by nucleases and supply Mn2+ for the DNAzyme reaction. After entering into living cells, the MnO2 nanosheets can be decomposed by intracellular glutathione (GSH) and release the loaded nucleic acid probes. In the presence of target miRNA, the locking strand (L) was hybridized with target miRNA, and the DNAzyme was released, which then cleaved the substrate hairpin (H1). This cleavage reaction resulted in the formation of a trigger sequence (TS) that can activate CHA and recover the fluorescence readout. Meanwhile, the DNAzyme was released from the cleaved H1 and bound to other H1 for new rounds of DNAzyme-based amplification. The TS was also released from CHA and involved in the new cycle of CHA. By this DCC nanosystem, low-abundance target miRNA can activate many DNAzyme and generate numerous TS for CHA, resulting in sensitive and selective analysis of miRNAs with a limit of detection of 5.4 pM, which is 18-fold lower than that of the traditional CHA system. This stable, sensitive, and selective nanosystem holds great potential for miRNA analysis, clinical diagnosis, and other related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zihao Li
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanli Tong
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Taorong Shen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Chen
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Shaoqiang Wen
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jianhe Guo
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Chen H, Chen X, Chen Y, Zhang C, Sun Z, Mo J, Wang Y, Yang J, Zou D, Luo Y. High-fidelity imaging of intracellular microRNA via a bioorthogonal nanoprobe. Analyst 2023; 148:1682-1693. [PMID: 36912705 DOI: 10.1039/d3an00088e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The spatiotemporal visualization of intracellular microRNA (miRNA) plays a critical role in the diagnosis and treatment of malignant disease. Although DNAzyme-based biosensing has been regarded as the most promising candidate, inefficient analytical resolution is frequently encountered. Here, we propose a bioorthogonal approach toward high-fidelity imaging of intracellular miRNA by designing a multifunctional nanoprobe that integrates MnO2 nanosheet-mediated intracellular delivery and activation by a fat mass and obesity-associated protein (FTO)-switched positive feedback. MnO2 nanosheets facilitate nanoprobe delivery and intracellular DNAzyme cofactors are released upon glutathione-triggered reduction. Meanwhile, an m6A-caged DNAzyme probe could be bioorthogonally activated by intracellular FTO to eliminate potential off-target activation. Therefore, the activated DNAzyme probe and substrate probe could recognize miRNA to perform cascade signal amplification in the initiation of the release of Mn2+ from MnO2 nanosheets. This strategy realized high-fidelity imaging of intracellular aberrant miRNA within tumor cells with a satisfactory detection limit of 9.7 pM, paving the way to facilitate clinical tumor diagnosis and prognosis monitoring.
Collapse
Affiliation(s)
- Hengyi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Yi Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Chong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Jiaxi Mo
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, P.R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China.
| | - Dongsheng Zou
- College of Computer Science, Chongqing University Chongqing, 400044, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400044, P.R. China. .,College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, P.R. China.,Department of Laboratory Medicine, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, 650118, P.R. China
| |
Collapse
|
6
|
Lu Q, Xie L, Yin S, Chen F, Wu C, Liu M, Li H, Zhang Y. Ultrasensitive detection of microRNA-10b through target-triggered catalytic hairpin assembly and upconversion nanoparticles-based luminescence resonance energy transfer. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Zhan J, Liu Z, Liu R, Zhu JJ, Zhang J. Near-Infrared-Light-Mediated DNA-Logic Nanomachine for Bioorthogonal Cascade Imaging of Endogenous Interconnected MicroRNAs and Metal Ions. Anal Chem 2022; 94:16622-16631. [DOI: 10.1021/acs.analchem.2c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Xing C, Lin Q, Gao X, Cao T, Chen J, Liu J, Lin Y, Wang J, Lu C. Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst-DNAzyme Circuit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39866-39872. [PMID: 36018586 DOI: 10.1021/acsami.2c11923] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNAzyme-based signal amplification circuits promote the advances in low-abundant miRNA imaging in living cells. However, due to the insufficient cofactor in living cells and unsustainable target utilization, self-powered and self-feedback DNAzyme amplification circuits have rarely been achieved. Here, a MnO2 nanosheet-mediated self-powered and self-feedback entropy-driven catalyst (EDC)-DNAzyme nanoprobe (MnPFEDz) was demonstrated for sensitive imaging of intracellular microRNA (miRNA). In this strategy, MnPFEDz was formed by adsorbing EDC modules and substrate probes on MnO2 nanosheets. The MnO2 nanosheets acted not only as glutathione (GSH)-responsive nanocarriers for efficient delivery of DNA probes but also as a DNAzyme cofactor supplier to power the DNAzyme biocatalysis and promote signal transduction in a feedback way. When entering the cells, GSH could decompose MnO2 nanosheets to generate numerous Mn2+ ion cofactors, leading to the release of DNA probes. Subsequently, the target miRNA initiated EDC cycles to generate amplified fluorescence signals and exposed the complete DNAzyme. Meanwhile, each of the exposed DNAzyme then cleaved the substrate probes with the help of Mn2+ ion cofactors and released a new trigger analogue for the next round of EDC cycles, initiating additional fluorescence signals in a feedback way. As a multiple signal amplification strategy, the MnPFEDz nanoprobe facilitated the effective detection of intracellular molecules with enhanced sensitivity and provided a versatile strategy for the construction of self-powered and self-feedback DNA circuits in living cells.
Collapse
Affiliation(s)
- Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Qitian Lin
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xue Gao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Ting Cao
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jing Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jialing Liu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Yuhong Lin
- Institute of Nanobiomaterials and Immunology, School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jun Wang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Chunhua Lu
- College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
9
|
Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens Bioelectron 2022; 212:114423. [DOI: 10.1016/j.bios.2022.114423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
|
10
|
Huang X, Zhang Y, Chen J, Zhang L, Xu Y, Yin W, Shi Y, Liu SY, Zou X, Dai Z. Dual-Locked DNAzyme Platform for In Vitro and In Vivo Discrimination of Cancer Cells. Anal Chem 2022; 94:12221-12230. [PMID: 36000958 DOI: 10.1021/acs.analchem.2c02788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Imaging of tumor-associated microRNAs (miRNAs) can provide abundant information for cancer diagnosis, whereas the occurrence of trace amounts of miRNAs in normal cells inevitably causes an undesired false-positive signal in the discrimination of cancer cells during miRNA imaging. In this study, we propose a dual-locked (D-locked) platform consisting of the enzyme/miRNA-D-locked DNAzyme sensor and the honeycomb MnO2 nanosponge (hMNS) nanocarrier for highly specific cancer cell imaging. For a proof-of-concept demonstration, apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 were chosen as key models. The hMNS nanocarrier can efficiently release the D-locked DNAzyme sensor in living cells due to the decomposition of hMNS by glutathione, which can also supply Mn2+ for DNAzyme cleavage. Ascribing to the smart design of the D-locked DNAzyme sensor, the fluorescence signal can only be generated by the synergistic response of APE1 and miR-21 that are overexpressed in cancer cells. Compared with the miRNA single-locked DNAzyme sensor and the small-molecule (ATP)/miRNA D-locked DNAzyme sensor, the proposed enzyme (APE1)/miRNA D-locked DNAzyme sensor exhibited 2.6-fold and 2.4-fold higher discrimination ratio (Fcancer/Fnormal) for cancer cell discrimination, respectively. Owing to the superior performance, the D-locked strategy can selectively generate a fluorescence signal in cancer cells, facilitating accurate discrimination of cancer both in vitro and in vivo. Furthermore, this D-locked platform is easily adaptable toward other target molecules by redesigning the DNA sequences. The outstanding performance and expansibility of this D-locked platform holds promising prospects for cancer diagnosis and related biomedical applications.
Collapse
Affiliation(s)
- Xing Huang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lang Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wen Yin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yakun Shi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
11
|
Liu S, Wu J, He M, Chen B, Kang Q, Xu Y, Yin X, Hu B. DNA Tetrahedron-Based MNAzyme for Sensitive Detection of microRNA with Elemental Tagging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59076-59084. [PMID: 34851610 DOI: 10.1021/acsami.1c17234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterogeneous immunoassay based on magnetic separation is commonly used in inductively coupled plasma-mass spectrometry (ICP-MS)-based biomedical analysis with elemental labeling. However, the functionalized magnetic beads (MBs) often suffer from non-specific adsorption and random distribution of the functional probes. To overcome these problems, DNA tetrahedron (DT)-functionalized MBs were designed and further conjugated with substrate modified Au NPs (Sub-AuNP). Based on the prepared MB-DT-AuNP probes, an MB-DT based multicomponent nucleic acid enzyme (MNAzyme) system involving Au NPs as the elemental tags was proposed for highly sensitive quantification of miRNA-155 by ICP-MS. Target miRNA would trigger the assembly of MNAzyme, and Sub-AuNP would be cleaved from the MB-DT-AuNP probe, resulting in a cyclic amplification. Single-stranded DNA-functionalized MB (MB-ssDNA)-AuNP probes were prepared as well. Comparatively, the amount of Au NPs grafted onto MB-ssDNA-AuNP probes was higher than that grafted onto MB-DT-AuNP probes. Meanwhile, a higher signal-to-noise ratio was obtained by using MB-DT-AuNP probes over MB-ssDNA-AuNP probes in the MNAzyme system. Under the optimal experimental conditions, the limit of detection for target miRNA obtained by using MB-DT-AuNP probes was 1.15 pmol L-1, improved by 23 times over that obtained by the use of MB-ssDNA-AuNP probes. The proposed MB-DT-MNAzyme-ICP-MS method was applied to the analysis of miRNA-155 in serum samples, and recoveries of 86.7-94.6% were obtained. This method is featured with high sensitivity, good specificity, and simple operation, showing a great application potential in biomedical analysis.
Collapse
Affiliation(s)
- Shaocheng Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Jingyi Wu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yan Xu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Yao Y, Xue M, Mao W, Li Y, Zhu A, Chen T, Shen W, Liu C, Chen L, Tang S. Ni/Fe layered double hydroxide nanosheet/G-quadruplex as a new complex DNAzyme with highly enhanced peroxidase-mimic activity. Analyst 2021; 146:6470-6473. [PMID: 34609387 DOI: 10.1039/d1an01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel and low-cost DNAzyme, Ni/Fe layered double hydroxide (LDH) nanosheet/G-quadruplex (without hemin) with enhanced peroxidase-mimic activity was designed. The catalytic mechanism was investigated. The detection of Cu(II) in actual serum samples could be realized sensitively via this efficient DNAzyme-based method.
Collapse
Affiliation(s)
- Yao Yao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Mingliang Xue
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Mao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Yana Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Anni Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Lizhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
13
|
Target-swiped DNA lock for electrochemical sensing of miRNAs based on DNAzyme-assisted primer-generation amplification. Mikrochim Acta 2021; 188:255. [PMID: 34264390 DOI: 10.1007/s00604-021-04815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 10/20/2022]
Abstract
As an extremely important post-transcriptional regulator, miRNAs are involved in a variety of crucial biological processes, and the abnormal expressions of miRNAs are closely related to a variety of diseases. In this work, for the first time, we designed a nucleic acid lock nanostructure for specific detection of miRNA-21, which changes the self-structure to "active conformation" by binding the target, in order to generate triggers to initiate the subsequent reaction. Emphatically, this flexible nucleic acid lock is capable of self-cleaving without the assistance of external component, overcoming the disadvantages of the complex design and requiring protease assistance in traditional nanostructure. Moreover, the combination of DNAzyme and RCA technology not only greatly improves the efficiency of signal amplification but also enables primer generation to simultaneous cascade RCA amplification. Additionally, the electrochemical detection technology based on silver nanoclusters overcomes the shortcomings of traditional detection methods such as low sensitivity and complex operation. The detection limit achieved was 9.3 aM with a wide dynamic response ranging from 10 aM to 100 pM (at the DPV peak of - 0.5 V), which is comparable to most of the reported studies. Therefore, our work provided an ultra-sensitive way for the detection of miRNAs using nanostructures and revealed an effective means for disease theranostics and cancer diagnosis. In this work, for the first time, we designed a nucleic acid lock nanostructure based on its self-structural transformation for the specific detection of miRNA. And the combination of DNAzyme and cascade RCA reaction greatly improved the signal amplification efficiency.
Collapse
|
14
|
Li X, Yang F, Gan C, Yuan R, Xiang Y. 3D DNA Scaffold-Assisted Dual Intramolecular Amplifications for Multiplexed and Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2021; 93:9912-9919. [PMID: 34232629 DOI: 10.1021/acs.analchem.1c02124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The simultaneous live-cell imaging of multiple intracellular and disease-related microRNAs (miRNAs) with low abundances is highly important to enhance specificity and accuracy for disease diagnosis. On the basis of the improved cell internalization and accelerated reaction kinetics, we develop a three-dimensional (3D) DNA nanoprobe that integrates intramolecular DNAzyme (intra-Dz) and catalytic hairpin assembly (intra-CHA) amplifications to simultaneously monitor multiple miRNAs in living cells. The sensing components are loaded on a DNA scaffold via the sticky-end hybridization of the DNA sequences to increase the local concentrations of the signal probes. The miRNA-21 and miRNA-155 target sequences can trigger intra-Dz and -CHA amplifications on the nanoprobes to show significantly amplified and distinct fluorescence at different wavelengths for simultaneously monitoring low levels of miRNAs. Real-time fluorescence microscopy reveals that such a 3D DNA nanoprobe design with the intra-Dz and -CHA amplifications can accelerate the reaction rate compared to that of the conventional free Dz and CHA because of the increased local concentrations of the sensing components. Importantly, the 3D DNA nanoprobe has desirable stability and biocompatibility and can be readily delivered into living cells to achieve multiplexed and highly sensitive sensing of intracellular miRNA-155 and miRNA-21 sequences. With the demonstration of its intracellular application, the developed 3D DNA nanoprobe thus holds promising potential for biological studies and accurate disease diagnosis.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
15
|
Kang Q, He M, Chen B, Xiao G, Hu B. MNAzyme-Catalyzed Amplification Assay with Lanthanide Tags for the Simultaneous Detection of Multiple microRNAs by Inductively Coupled Plasma–Mass Spectrometry. Anal Chem 2020; 93:737-744. [DOI: 10.1021/acs.analchem.0c02455] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qi Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Guangyang Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Liu LQ, Yin F, Lu Y, Yan XL, Wu CC, Li X, Li C. A light-up "G-quadruplex nanostring" for label-free and selective detection of miRNA via duplex-specific nuclease mediated tandem rolling circle amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 32:102339. [PMID: 33227538 DOI: 10.1016/j.nano.2020.102339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/29/2022]
Abstract
MicroRNA (miRNA) has emerged as a promising genetic marker for cancer diagnosis and therapy because its expression level is closely related to the progression of malignant diseases. Herein, a label-free and selective fluorescence platform was proposed for miRNA based on light-up "G-quadruplex nanostring" via duplex-specific nuclease (DSN) mediated tandem rolling circle amplification (RCA). First, a long DNA generated from upstream RCA was designed with the antisense sequences for miR-21 and downstream RCA primer. Upon recognizing miR-21, the resulting DNA-RNA permitted DSN digestion and triggered downstream two-way RCA, and generation of abundant "G-quadruplex nanostring" binding with ZnPPIX for label-free fluorescent responses. In our strategy, the strong preference of DSN for perfectly matched DNA/RNA ensures its excellent selectivity. The developed method generated wide linear response with LOD of 1.019 fM. Additionally, the miR-21 levels in cell extracts have been evaluated, revealing the utility of this tool for biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Li-Qi Liu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Fei Yin
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Yu Lu
- Department of Chemistry, Liaocheng University, Liaocheng, China
| | - Xi-Luan Yan
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng, China.
| | - Chenzhong Li
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taiwan
| |
Collapse
|
17
|
Shi H, Dai J, Wang F, Xia Y, Xiao D, Zhou C. Rapid and colorimetric detection of nucleic acids based on entropy-driven circuit and DNAzyme-mediated autocatalytic reactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2779-2784. [PMID: 32930309 DOI: 10.1039/d0ay00341g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a novel, rapid and enzyme-free colorimetric biosensor for the detection of nucleic acids has been developed based on entropy-driven (EDC) circuit and DNAzyme-mediated autocatalytic reactions. On sensing the target DNA, the EDC reaction could be initiated and the intact Mg2+-dependent DNAzyme was formed in the reaction product; then, a "mimic target" DNA was generated during the cleavage process of DNAzyme, which in turn catalyzed the EDC reaction corresponding to an autocatalytic process. Meanwhile, numerous G-quadruplex structures were released and further interacted with hemin to form peroxidase-mimicking DNAzyme, inducing a remarkably amplified colorimetric signal. This autocatalytic EDC (AEDC) sensing system exhibited a linear relationship in the range from 20 pM to 10 nM with a detection limit of 10.2 pM. More importantly, benefitting from the Mg2+-dependent DNAzyme-mediated autocatalytic reaction, the detection time (20 min) was significantly reduced compared to that for the reported EDC strategies. In addition, this sensing system has been applied for the detection of target DNA in human serum samples, indicating that it is promising for the on-site and real-time detection of nucleic acids in biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Hongli Shi
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jianyuan Dai
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fang Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yushun Xia
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
18
|
Liu C, Han J, Zhou L, Zhang J, Du J. DNAzyme-Based Target-Triggered Rolling-Circle Amplification for High Sensitivity Detection of microRNAs. SENSORS 2020; 20:s20072017. [PMID: 32260285 PMCID: PMC7180602 DOI: 10.3390/s20072017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs regulate and control the growth and development of cells and can play the role of oncogenes and tumor suppressor genes, which are involved in the occurrence and development of cancers. In this study, DNA fragments obtained by target-induced rolling-circle amplification were constructed to complement with self-cleaving deoxyribozyme (DNAzyme) and release fluorescence biomolecules. This sensing approach can affect multiple signal amplification permitting fluorescence detection of microRNAs at the pmol L−1 level hence affording a simple, highly sensitive, and selective low cost detection platform.
Collapse
|
19
|
|
20
|
Liu X, Zhou X, Xia X, Xiang H. Catalytic hairpin assembly-based double-end DNAzyme cascade-feedback amplification for sensitive fluorescence detection of HIV-1 DNA. Anal Chim Acta 2019; 1096:159-165. [PMID: 31883582 DOI: 10.1016/j.aca.2019.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 11/30/2022]
Abstract
In this work, a simple all-nucleic acid cascade-feedback amplification strategy for homogeneous and protein enzyme-free fluorescence detection of HIV-1 related DNA (HIV-1 DNA) has been proposed by integrating catalytic hairpin assembly (CHA) circuit with double-end Mg2+-dependent DNAzyme autocatalytic feedback amplification. Here, the active double-end DNAzyme assemblies were derived from target-catalyzed CHA circuit, which further circularly cleaved the ribonucleotide-containing quenched fluorogenic hairpin substrates to generate distinctly amplified fluorescence signal. Meanwhile, the released quencher-labeled fragments as target DNA analogues were also able to autocatalyze CHA-DNAzyme reaction process, thus improving the determination sensitivity of HIV-1 DNA. The result demonstrated that the fluorescence intensity increment of double-end DNAzyme was over 3 times higher than that of single-end DNAzyme. The sensing method displayed a good linear range from 1 pM to 2 nM with a detectable minimum concentration of 1 pM and high specificity towards different mismatched target DNAs. Moreover, the practical application potential of the proposed method for target DNA detection in complex biological matrices was also assessed. Considering the appealing feature of programmable nucleic acids in CHA-DNAzyme sensing platform, the current strategy may provide a prospective design for detection of broad-spectrum nucleic acid biomarkers.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiaomei Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xinyu Xia
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hua Xiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
21
|
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019; 144:4917-4924. [PMID: 31313769 DOI: 10.1039/c9an01013k] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are attractive candidates for biomarkers for early cancer diagnosis, and play vital roles in physiological and pathological processes. In this work, we developed a colorimetric and fluorescent dual-mode sensor for miRNA detection based on the optical properties of gold nanoparticles (AuNPs) and the duplex-specific nuclease (DSN)-assisted signal amplification technique. In brief, FAM labelled hairpin probes (HPs) were immobilized on AuNPs, and fluorescence was efficiently quenched by the vicinity of the fluorophores to the AuNPs surface. In the presence of target miRNAs, the HPs could specifically hybridize with miRNAs and the DNA strand in the DNA/RNA heteroduplexes could be subsequently hydrolyzed by DSN. As a result, numbers of fluorophores were released into the solution, resulting in obvious fluorescence signal recovery. Meanwhile, the target miRNAs were able to participate in other hybridization reactions. With the DSN-assisted signal amplification technique, lots of gold nanoparticles were produced with short-chain DNA on their surface, which could aggregate in salt solution and result in a colorimetric detection. The proposed dual-mode strategy offers a sensitive, accurate and selective detection method for miRNAs. One reason is that the stem of the HPs was elaborately designed to avoid hydrolyzation by DSN under optimal conditions, which ensures a relatively low background and high sensitivity. The other is that the dual-mode strategy is more beneficial for enhancing the accuracy and reproducibility of the measurements. Moreover, the unique selective-cutting ability and single-base mismatch differentiation capability of the DSN also give rise to a satisfactory selectivity. This demonstrated that the developed method could quantitatively detect miR-21 down to 50 pM with a linear calibration range from 50 pM to 1 nM, and the analytical assay of target miRNAs in cell lysate samples revealed its great potential for application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zi Ye
- High School of Yali, Changsha, Hunan 410007, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|