1
|
Queffélec C, Pati PB, Pellegrin Y. Fifty Shades of Phenanthroline: Synthesis Strategies to Functionalize 1,10-Phenanthroline in All Positions. Chem Rev 2024; 124:6700-6902. [PMID: 38747613 DOI: 10.1021/acs.chemrev.3c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
1,10-Phenanthroline (phen) is one of the most popular ligands ever used in coordination chemistry due to its strong affinity for a wide range of metals with various oxidation states. Its polyaromatic structure provides robustness and rigidity, leading to intriguing features in numerous fields (luminescent coordination scaffolds, catalysis, supramolecular chemistry, sensors, theranostics, etc.). Importantly, phen offers eight distinct positions for functional groups to be attached, showcasing remarkable versatility for such a simple ligand. As a result, phen has become a landmark molecule for coordination chemists, serving as a must-use ligand and a versatile platform for designing polyfunctional arrays. The extensive use of substituted phenanthroline ligands with different metal ions has resulted in a diverse array of complexes tailored for numerous applications. For instance, these complexes have been utilized as sensitizers in dye-sensitized solar cells, as luminescent probes modified with antibodies for biomaterials, and in the creation of elegant supramolecular architectures like rotaxanes and catenanes, exemplified by Sauvage's Nobel Prize-winning work in 2016. In summary, phen has found applications in almost every facet of chemistry. An intriguing aspect of phen is the specific reactivity of each pair of carbon atoms ([2,9], [3,8], [4,7], and [5,6]), enabling the functionalization of each pair with different groups and leading to polyfunctional arrays. Furthermore, it is possible to differentiate each position in these pairs, resulting in non-symmetrical systems with tremendous versatility. In this Review, the authors aim to compile and categorize existing synthetic strategies for the stepwise polyfunctionalization of phen in various positions. This comprehensive toolbox will aid coordination chemists in designing virtually any polyfunctional ligand. The survey will encompass seminal work from the 1950s to the present day. The scope of the Review will be limited to 1,10-phenanthroline, excluding ligands with more intracyclic heteroatoms or fused aromatic cycles. Overall, the primary goal of this Review is to highlight both old and recent synthetic strategies that find applicability in the mentioned applications. By doing so, the authors hope to establish a first reference for phenanthroline synthesis, covering all possible positions on the backbone, and hope to inspire all concerned chemists to devise new strategies that have not yet been explored.
Collapse
Affiliation(s)
| | | | - Yann Pellegrin
- Nantes Université, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
2
|
Zhang Q, Wang Y, Braunstein P, Lang JP. Construction of olefinic coordination polymer single crystal platforms: precise organic synthesis, in situ exploration of reaction mechanisms and beyond. Chem Soc Rev 2024; 53:5227-5263. [PMID: 38597808 DOI: 10.1039/d3cs01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Olefin [2+2] photocycloaddition reactions based on coordination-bond templates provide numerous advantages for the selective synthesis of cyclobutane compounds. This review outlines the recent advances in the design and construction of single crystal platforms of olefinic coordination polymers for precise organic synthesis, in situ exploration of reaction mechanisms, and possible developments as comprehensively as possible. Numerous examples are presented to illustrate how the arrangements of the olefin pairs influence the solid-state photoreactivity and examine the types of cyclobutane products. Furthermore, the photocycloaddition reaction mechanisms are investigated by combining advanced techniques such as single crystal X-ray diffraction, powder X-ray diffraction, nuclear magnetic resonance, infrared spectroscopy, fluorescence spectroscopy, laser scanning confocal microscopy and theoretical calculations. Finally, potential applications resulting from promising physicochemical properties before and after photoreactions are discussed, and existing challenges and possible solutions are also proposed.
Collapse
Affiliation(s)
- Qiaoqiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Shit M, Halder S, Dey A, Dutta B, Chanthapally A, Jana K, Sinha C. Pyridyl-Isonicotinoyl Hydrazone-Bridged Zn(II) Coordination Framework with Thiophenedicarboxylato Link: Structure, Biological Activity, and Electrical Conductivity. Inorg Chem 2023; 62:19937-19947. [PMID: 37993987 DOI: 10.1021/acs.inorgchem.3c02593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Multidimensional applicability of functional materials is one of the focal attractions in today's scientific research. Highly stable and crystalline coordination polymers served as one of the active members in the club of multifunctional materials. Toward this concept, a 3-dimensional (3D) coordination framework, {[Zn2(tdc)2(pcih)2]n} (1) (tdc2-, 2,5-thiophene dicarboxylate; pcih, pyridine-4-carboxaldehyde isonicotinoyl hydrazine), is designed and has been structurally well characterized by single crystal X-ray crystallography. One of the carboxylate groups of tdc2- chelates to Zn(II), while the other carboxylato group (-COO) acts as bridging-O to neighboring Zn(II); the pcih serves as pyridyl-N bridging motif to two Zn(II) centers. The optical band gap, 3.83 eV (Tauc's plot), implies probable semiconducting ability of the material. Interestingly, the device fabricated using compound 1 measures the electrical conductivity, 2.21 × 10-5 S cm-1, and series resistance (Rs), 807 Ω, at the dark phase, which are improved significantly to 6.36 × 10-5 S cm-1 and 460 Ω, respectively, under illumination conditions. Isoniazid, used to synthesize pcih and hence the Zn(II) compound 1, is a medicine; so, the medicinal efficiency of 1 is checked by measuring the anticancer activity against MDA-MB-231, HeLa, HCT-116, and HepG2 cells. It is observed that drug efficacy is highest on MDA-MB-231 cells (IC50: 19.43 ± 1.36 μM) than other cancer cells [IC50: 24.43 ± 2.02 μM (HeLa), 26.06 ± 3.48 μM (HCT-116), and 44.28 ± 3.04 μM (HepG2)]. Therefore, the material has significant contribution in the area of energy and health toward the sustainable development goals.
Collapse
Affiliation(s)
- Manik Shit
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Arka Dey
- Department of Physics, National Institute of Technology, Durgapur, Durgapur 713209, India
| | - Basudeb Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Anjana Chanthapally
- Deptartment of Chemistry, M. A. College of Engineering, Kothamangalam, Kerala 686666, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
4
|
Wu LK, Zou QH, Yao HQ, Ye HY, Li JR. Zero-dimensional organic-inorganic hybrid manganese bromide with coexistence of dielectric-thermal double switches and efficient photoluminescence. Dalton Trans 2023; 52:11558-11564. [PMID: 37545469 DOI: 10.1039/d3dt01823g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Zero-dimensional (0D) hybrid metal halides have attracted much attention due to their rich composition, excellent optical stability, large exciton binding energy, etc. Photoelectric switchable multifunctional materials can integrate multiple physical properties (e.g., ferroelectricity, photoluminescence, magnetic, etc.) into one device and are widely used in many fields such as smart switches, sensors, etc. However, multifunctional materials with thermal energy storage, stimulant dielectric response, and light-emitting properties are rarely reported. Here, we synthesized a new organic-inorganic hybrid metal halide single crystal [TEMA]2MnBr4 (1) (TEMA+ = triethylmethylammonium). Compound 1 undergoes a reversible phase transition at a high temperature of 344/316 K, having a large thermal hysteresis of 28 K and exhibits high stability dielectric switching characteristics near the phase transition temperature. The single crystal exhibits green emission at 513 nm under UV excitation, originating from the 4T1g(G) → 6A1g(S) transition of Mn2+ ions. Excitingly, this single crystal's photoluminescence quantum yield (PLQY) is as high as 80.78%. This work provides a strategy for the development of organic-inorganic hybrid optoelectronic multifunctional materials with high-efficient light emission and switchable dielectric properties.
Collapse
Affiliation(s)
- Ling-Kun Wu
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Qing-Hua Zou
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Hai-Quan Yao
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China.
| |
Collapse
|
5
|
Chen YR, Jia MZ, Pan JQ, Tan B, Zhang J. Photomechanical behavior triggered by [2 + 2] cycloaddition and photochromism of a pyridinium-functionalized coordination complex. Dalton Trans 2022; 51:6157-6161. [PMID: 35380565 DOI: 10.1039/d2dt00599a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Photoinduced bending behavior triggered by [2 + 2] cycloaddition of a photoactive complex has been successfully achieved, accompanied by photochromic and fluorescence changes that provide convenience for long-distance observation of photomechanical motion. The key design feature is based on the introduction of flexible methylene groups and cation-π interactions. Moreover, the potential application in photomechanical devices was reflected by bending and supporting force experiments on the complex composite film, which is of increasing importance especially in soft actuators and robots.
Collapse
Affiliation(s)
- Yun-Rui Chen
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Meng-Ze Jia
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jia-Qi Pan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Bin Tan
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.
| |
Collapse
|
6
|
Nishikawa H, Sano K, Araoka F. Anisotropic fluid with phototunable dielectric permittivity. Nat Commun 2022; 13:1142. [PMID: 35241651 PMCID: PMC8894468 DOI: 10.1038/s41467-022-28763-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
Dielectric permittivity, a measure of polarisability, is a fundamental parameter that dominates various physical phenomena and properties of materials. However, it remains a challenge to control the dielectric permittivity of materials reversibly over a large range. Herein, we report an anisotropic fluid with photoresponsive dielectric permittivity (200 < ε < 18,000) consisting of a fluorinated liquid-crystalline molecule (96 wt%) and an azobenzene-tethered phototrigger (4 wt%). The reversible trans-cis isomerisation of the phototrigger under blue and green light irradiation causes a switch between two liquid-crystalline phases that exhibit different dielectric permittivities, with a rapid response time (<30 s) and excellent reversibility (~100 cycles). This anisotropic fluid can be used as a flexible photovariable capacitor that, for example, allows the reversible modulation of the sound frequency over a wide range (100 < f < 8500 Hz) in a remote manner using blue and green wavelengths. Light stimuli are widely used to control material properties, yet it remains challenging to reversibly photocontrol the dielectric permittivity. Nishikawa et al. achieve this goal in an anisotropic fluid via its liquid crystal phase transition induced by isomerization of an azobenzene-tethered phototrigger.
Collapse
Affiliation(s)
- Hiroya Nishikawa
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Koki Sano
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. .,Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan.
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
7
|
Li NY, Guo XY, Liu LL, Ma J, Liu D. Topological structural transformation of a two-dimensional coordination polymer via single-crystal to single-crystal photoreaction. Dalton Trans 2022; 51:17235-17240. [DOI: 10.1039/d2dt03063b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-dimensional coordination polymer can carry out photoinduced C–C coupling reaction through single-crystal to single-crystal transformation and exhibit photocontrolled fluorescence.
Collapse
Affiliation(s)
- Ni-Ya Li
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Xin-Yu Guo
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Lei-Lei Liu
- School of Environment and Material Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, Shandong, P. R. China
| | - Jian Ma
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| | - Dong Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China
| |
Collapse
|
8
|
Wang LF, Lv BH, Wu FT, Huang GZ, Ruan ZY, Chen YC, Liu M, Ni ZP, Tong ML. Reversible on-off switching of spin-crossover behavior via photochemical [2+2] cycloaddition reaction. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1093-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Thapa KB, Chen B, Bian L, Xu Y, He J, Huang W, Ju Q, Fang Z. Single-Metallic Thermoresponsive Coordination Network as a Dual-Parametric Luminescent Thermometer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35905-35913. [PMID: 34286975 DOI: 10.1021/acsami.1c07812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The single-metallic coordination networks (CNs), simultaneously exhibiting temperature-dependent lifetime (TDLT) and emission band shift (TDEBS), are desirable for application in luminescent thermometers with high accuracy and reliability in a large temperature range. Nonetheless, up to date, there are no reports on such kinds of materials due to the lack of in-depth understanding of the origin of TDLT and TDEBS at a molecule level, being critical for exploiting a universal approach to design a dual-parametric CN phosphorescent thermometer (CN-PT). Herein, we have constructed a thermoresponsive CN [Cu2(L1)Br2]∞ (IAM21-1, L1 = N1,N6-di(pyridin-3-yl)adipamide) via a flexible-ligand-implanted strategy. The TDLT and TDEBS properties of IAM21-1 enable it to be applied as a single-metallic dual-parametric CN-PT in 50-500 K, which is the widest temperature range reported so far. The combination of structure analysis and DFT calculations demonstrates that the redshift of the emission band upon the decreasing temperature originates from the reversible skeleton-shrinkage-triggered narrower band gap. This work has unveiled the origin of TDLT and TDEBS properties and proposed an efficient strategy for designing dual-parametric CN-PTs.
Collapse
Affiliation(s)
- Kedar Bahadur Thapa
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Baojun Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Li Bian
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yixiu Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jiangang He
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhenlan Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
10
|
Hazra A, Bonakala S, Adalikwu SA, Balasubramanian S, Maji TK. Fluorocarbon-Functionalized Superhydrophobic Metal-Organic Framework: Enhanced CO 2 Uptake via Photoinduced Postsynthetic Modification. Inorg Chem 2021; 60:3823-3833. [PMID: 33655749 DOI: 10.1021/acs.inorgchem.0c03575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The design and synthesis of porous materials for selective capture of CO2 in the presence of water vapor is of paramount importance in the context of practical separation of CO2 from the flue gas stream. Here, we report the synthesis and structural characterization of a photoresponsive fluorinated MOF {[Cd(bpee)(hfbba)]·EtOH}n (1) constructed by using 4,4'-(hexafluoroisopropylidene)bis(benzoic acid) (hfbba), Cd(NO3)2, and 1,2-bis(4-pyridyl)ethylene (bpee) as building units. Due to the presence of the fluoroalkyl -CF3 functionality, compound 1 exhibits superhydrophobicity, which is validated by both water vapor adsorption and contact angle measurements (152°). The parallel arrangement of the bpee linkers makes compound 1 a photoresponsive material that transforms to {[Cd2(rctt-tpcb)(hfbba)2]·2EtOH}n (rctt-tpcb = regio cis,trans,trans-tetrakis(4-pyridyl)cyclobutane; 1IR) after a [2 + 2] cycloaddition reaction. The photomodified framework 1IR exhibits increased uptake of CO2 in comparison to 1 under ambient conditions due to alteration of the pore surface that leads to additional weak electron donor-acceptor interactions with the -CF3 groups, as examined through periodic density functional theory calculations. The enhanced uptake is also aided by an expansion of the pore window, which contributes to increasing the rotational entropy of CO2, as demonstrated through force field based free energy calculations.
Collapse
Affiliation(s)
- Arpan Hazra
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Stephen Adie Adalikwu
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-560064 (India)
| |
Collapse
|
11
|
Cao LH, Xu XQ, Tang XH, Yang Y, Liu J, Yin Z, Zang SQ, Ma YM. Controllable Strategy for Metal-Organic Framework Light-Driven [2 + 2] Cycloaddition Reactions via Solvent-Assisted Linker Exchange. Inorg Chem 2021; 60:2117-2121. [PMID: 33400525 DOI: 10.1021/acs.inorgchem.0c02999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flexible olefinic trans-1,2-bis(4-pyridyl)ethene linkers were postsynthetically introduced into the metal-organic frameworks (MOFs) containing parallel rigid 4,4'-bipyridine linkers with a spacing of less than 4.2 Å by the linker exchange strategy, and then, the MOF satisfied Schmidt criteria could be obtained. Eventually, MOF products connected by cyclobutane derivatives were formed by the photochemical [2 + 2] cycloaddition reaction under UV irradiation.
Collapse
Affiliation(s)
- Li-Hui Cao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao-Qian Xu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao-Han Tang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Junyi Liu
- Air Liquide, Delaware Innovation Campus, 200 GBC Drive, Newark, Delaware 19702, United States
| | - Zheng Yin
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yang-Min Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
12
|
Ahmed F, Dutta B, Mir MH. Electrically conductive 1D coordination polymers: design strategies and controlling factors. Dalton Trans 2020; 50:29-38. [PMID: 33306072 DOI: 10.1039/d0dt03222k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the easy functionality and structural diversity of coordination polymers (CPs) coupled with superior thermal stability, many researchers have been prompted to explore the opportunity of introducing these hybrid materials as active components in various electronic devices, such as light emitting diodes (LED), solar cells, field effect transistors (FET), and Schottky barrier diodes (SBD). Therefore, the judicious selection of the structural components of CPs is directly related to their structure-property relationship and applications. One-dimensional (1D) CPs have recently emerged as excellent electrical conductors and are gaining enormous attention owing to their simple chain-like coordination arrays. In this article, we review the rational design strategies for synthesising 1D CPs and also point out the structural factors that affect the charge transport properties as well as the electrical conductivity of these materials.
Collapse
Affiliation(s)
- Faruk Ahmed
- Department of Chemistry, Aliah University, New Town, Kolkata 700 156, India.
| | | | | |
Collapse
|
13
|
Huang XD, Wen GH, Bao SS, Jia JG, Zheng LM. Thermo- and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties. Chem Sci 2020; 12:929-937. [PMID: 34163859 PMCID: PMC8178979 DOI: 10.1039/d0sc04851h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial smart materials with switchable multifunctionality are of immense interest owing to their wide application in sensors, displays and memory devices. Lanthanide complexes are promising multifunctional materials integrating optical and magnetic characteristics. However, synergistic manipulation of different physical properties in lanthanide systems is still challenging. Herein we designed and synthesized a mononuclear complex [DyIII(SCN)3(depma)2(4-hpy)2] (1), which incorporates 9-diethylphosphonomethylanthracene (depma) as a photo-active component and 4-hydroxypyridine (4-hpy) as a polar component. This compound shows several unusual features: (a) reversible thermo-responsive phase transition associated with the order-disorder transition of 4-hpy and SCN-, which leads to thermochromic behavior and dielectric anomaly; (b) reversible photo-induced dimerization of anthracene groups, which leads to synergistic switching of luminescence, magnetic and dielectric properties. To our knowledge, compound 1 is the first example of lanthanide complexes that show stimuli-triggered synergistic and reversible switching of luminescence, magnetic and dielectric properties.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
14
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Alothman ZA, Dutta B, Alam SM, Wabaidur SM, Mir MH. C–H···π(metal–ligand ring) interaction in a mesaconate bridged Cd(II) 1-D coordination polymer: structural elucidation, theoretical study, and photophysical properties. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1758932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zeid Abdullah Alothman
- Advanced Materials Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, Kolkata, India
| | | | - Saikh Mohammad Wabaidur
- Advanced Materials Chair, Chemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
16
|
Jana S, Ray A, Chandra A, El Fallah MS, Das S, Sinha C. Studies on Magnetic and Dielectric Properties of Antiferromagnetically Coupled Dinuclear Cu(II) in a One-Dimensional Cu(II) Coordination Polymer. ACS OMEGA 2020; 5:274-280. [PMID: 31956774 PMCID: PMC6964276 DOI: 10.1021/acsomega.9b02650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/13/2019] [Indexed: 05/15/2023]
Abstract
A one-dimensional Cu(II) coordination polymer with encapsulated antiferromagnetically coupled binuclear Cu(II) has been synthesized by using 5-nitroisophthalic acid (5-N-IPA) and 4-aminopyridine (4-APY) [Cu2(5-N-IPA)2(4-APY)4] n (1). Electrical properties are examined by complex impedance (Z*), dielectric permittivity (ε*), and ac conductivity studies at different frequencies (10 kHz-5 MHz) and temperatures (253-333 K). The contribution of grain and grain boundary has been explained by a different theoretical model. The variable temperature magnetic susceptibility data for compound 1 were recorded between 300 and 2 K. The shape of the curve (χM T vs T) indicates dominant antiferromagnetic coupling, which results from the interaction between the copper(II) atoms.
Collapse
Affiliation(s)
- Srikanta Jana
- Department
of Chemistry, and Department of Instrumentation Science, Jadavpur University, 700032 Kolkata, India
| | - Apurba Ray
- Department
of Chemistry, and Department of Instrumentation Science, Jadavpur University, 700032 Kolkata, India
| | - Angeera Chandra
- Department
of Chemistry, and Department of Instrumentation Science, Jadavpur University, 700032 Kolkata, India
| | - M. Salah El Fallah
- Departament
de Química Inorgànica i Organica, Secció de Química
Inorgànica, Universitat de Barcelona, Martí i Franquès,
1-11, 08028 Barcelona, Spain
- E-mail: (M.S.E.F.)
| | - Sachindranath Das
- Department
of Chemistry, and Department of Instrumentation Science, Jadavpur University, 700032 Kolkata, India
- E-mail: (S.D.)
| | - Chittaranjan Sinha
- Department
of Chemistry, and Department of Instrumentation Science, Jadavpur University, 700032 Kolkata, India
- E-mail: (C.S.)
| |
Collapse
|
17
|
Tu J, Chen H, Tian H, Yu X, Zheng B, Zhang S, Ma P. Temperature-induced structural transformations accompanied by changes in magnetic properties of two copper coordination polymers. CrystEngComm 2020. [DOI: 10.1039/d0ce00391c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two ferromagnetic copper compounds have been synthesized under different temperature, which represented the rare example of structural transformations resulting from the coordination modes of organic ligands supported by magnetic results.
Collapse
Affiliation(s)
- Jing Tu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hongju Tian
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Xianyong Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Shaowei Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- China
| |
Collapse
|
18
|
Khan S, Dutta B, Mir MH. Impact of solid-state photochemical [2+2] cycloaddition on coordination polymers for diverse applications. Dalton Trans 2020; 49:9556-9563. [DOI: 10.1039/d0dt01534b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Frontier article highlights the advancement of [2+2] photocycloaddition reactions within coordination polymers to fine tune their diverse physical and chemical properties.
Collapse
Affiliation(s)
- Samim Khan
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | - Basudeb Dutta
- Department of Chemistry
- Aliah University
- Kolkata 700 156
- India
| | | |
Collapse
|
19
|
Sun L, An Y, Ma L, Han Y. Single‐Crystalline Organoiridium Complex for Gas‐Triggered Chromogenic Switches and Its Applications on CO Detection and Reversible Scavenging. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li‐Ying Sun
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials Science, Northwest University Xi'an Shaaxi 710127 China
| | - Yuan‐Yuan An
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials Science, Northwest University Xi'an Shaaxi 710127 China
| | - Li‐Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials Science, Northwest University Xi'an Shaaxi 710127 China
| | - Ying‐Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule ChemistryCollege of Chemistry and Materials Science, Northwest University Xi'an Shaaxi 710127 China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
20
|
Zhu RR, Wang T, Yan T, Jia L, Xue Z, Zhou J, Du L, Zhao QH. [2 + 2] cycloaddition reaction and luminescent sensing of Fe3+ and Cr2O72− ions by a cadmium-based coordination polymer. Dalton Trans 2019; 48:12159-12167. [DOI: 10.1039/c9dt01696a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cadmium-based coordination polymer can produce the corresponding photoproduct via [2 + 2] cycloaddition reaction, and can detect both Fe3+ and Cr2O72− ions.
Collapse
Affiliation(s)
- Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Tao Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Tong Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Lei Jia
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Zhe Xue
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry
- Yunnan University
- Kunming 650091
- People's Republic of China
- School of Chemical Science and Technology Pharmacy
| |
Collapse
|
21
|
Yu JG, Gan MM, Bai S, Han YF. Photodriven solid-state multiple [2 + 2] cycloaddition strategies for the construction of polycyclobutane derivatives. CrystEngComm 2019. [DOI: 10.1039/c9ce00971j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state multiple [2 + 2] cycloaddition reactions of polyenes continue to attract attention as a mediate for the synthesis of polycyclobutane derivatives.
Collapse
Affiliation(s)
- Jian-Gang Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Ming-Ming Gan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|